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1. Summary 
The RSRS Architecture Study is an in-depth study of self-regenerative systems, with application 
to the projects funded by DARPA’s SRS program.  This study assumes reader familiarity with 
self-regenerative system concepts and it is not intended as a primer to such systems.  Part 1 of 
this study analyzed the SRS Phase I projects using the RSRS architecture.  It is attached as AP-
PENDIX of this final report.  Part 2 of the RSRS Architecture Study (this final report) considers 
how to move forward based on several factors.  First, we analyze the current/planned results of 
SRS Phase I projects, as described by the RSRS architecture as the unifying framework.  Second, 
we apply the analysis to two military scenarios, TCT (Time Critical Targeting) and Hyper-
D/Aegis, based primarily on information gathered by the PI during a visit to Naval Surface War 
Center Dahlgren Division.  Third, we inserted into the scenario analysis of the new requirements 
introduced by BAA 06-35 as appropriate. 

Architecture.  The RSRS Architecture is a conceptually simple, yet functionally rich description 
of the four topic areas of SRS program, as well as the interactions among them.  RSRS uses the 
concepts of reflection and feedback control between SRS components and within each compo-
nent to describe their internal structure and external interactions.  The main feature of RSRS is 
the monitor-learning-actuator (MLA) loop, based on the concepts of reflection and feedback con-
trol.  The MLA is present in each system layer and component that supports self-regeneration.  
By monitoring component and system behavior, systems and applications are able to detect at-
tacks and recover through the regeneration of data and programs using diversity to counter 
attacks targeting the physical representation of application (or system) programs.  The MLA ab-
straction also suggests a standard interface among the technology areas as well as supporting 
customized extensions for each project.  In addition to the main MLA abstraction, RSRS also in-
cludes component tools for specific areas such as Diversity and Redundancy.     

Interfaces.  The RSRS description of component interactions can be captured by a set of stan-
dard interfaces.  Such a standard interface defines the common functionality among the projects 
of each area.  Furthermore, extensions to these interfaces can be designed to support unique fea-
tures provided by individual projects.  The RSRS interface design is based on events, which 
carry both significant state information (the monitoring part of MLA) and control commands (the 
actuator part of MLA).  The state notification events have a high degree of composability be-
tween event types.  The control events enable various feedback control mechanisms to be 
adopted, including distributed and centralized control.  These interfaces will support a manage-
able integration of SRS Phase I projects and provide the SRS facilities to other applications and 
demonstration projects that need self-regenerative capabilities.  A high-level specification of the 
general RSRS interface is given in Part 2 of this study.  Development of detailed interfaces is 
premature at this stage, because most of the software products developed in Phase 1 are not de-
signed as components with well-defined external interfaces. 

Evaluation.  In the previous report (Part 1), the RSRS architecture has been successfully applied 
to model the self-regenerative aspects of current SRS Phase I projects.   These models can be 
used to compare the projects of the same area at a qualitative level.  After reprising the Study 
Summary and Architecture Description from Part 1, we discuss the main useful components and 
technologies that have been developed in the Program to date as well as work remaining to be 
done.  We then present a high-level description of an event-based interface that could be used to 
facilitate rapid integration of SRS Phase I components into a complete system.  Instead of using 
the interfaces for a qualitative analysis of the SRS Phase I project deliverables (information that 
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we have yet to receive), we proceed with two military scenarios in which we look forward and 
attempt to use the lessons in this architectural study to apply the results of SRS Phase I projects 
to concrete application scenarios.  We will discuss the research challenges as well as bases for 
confidence for SRS Phase II proposers.  The first scenario is TCT (Time-Critical Targeting based 
on DCGS) and the second scenario is Hyper-D/Aegis/DD(X).  For the Aegis scenario, we ana-
lyze the research challenges as well as basis for confidence of SRS Phase II projects.  We also 
describe the applicability of concrete SRS Phase I project results (as proposed) to both scenarios.   

In the rest of this report, the term SRS is used primarily to denote the SRS Phase I projects and 
tools, although much of the RSRS architecture and analysis apply to both SRS Phase I and SRS 
Phase II programs. 
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2. RSRS Architecture 
This section is a copy of the same section in Part 1 of the RSRS Architecture Study (attached in 
the Appendix).  It is included here to make this document self-contained. 

2.1. RSRS Main Concepts 
The main concepts used in RSRS (see Figure 1) are: (1) feedback control and reflection in the 
MLA loop for self-regeneration, and (2) recursive and mutual use of component tools such as 
Diversity and Redundancy.  In Figure 1, we have liberally added recursive use of tools among 
the four key technology areas of SRS: (1) Biologically-Inspired Diversity, (2) Cognitive Immu-
nity and Regeneration, (3) Granular, Scalable Redundancy, and (4) Reasoning About Insider 
Threats.1  This level of interaction and integration may not be achieved at the end of Phase 1; 
however, an effective architecture for the SRS program must show the potential interfaces for in-
tegration among the tools and techniques being developed by these technology areas. 

 
Figure 1 RSRS Functional Architecture 

MLA Loop.  The foundation of RSRS is the monitor-learning-actuator (MLA) loop, based on 
the concepts of feedback control in engineering systems and reflection in programming lan-
guages.  The MLA loop consists of three components;  (1) a monitor that reflectively observes 
system behavior (e.g., in applications running inside a Cognitive Immunity and Regeneration en-
vironment) or watches for anomalies in other parts of the system (e.g., insider threat monitors), 
(2) an actuator that takes self-regenerative action to recover from observed anomalies, and (3) an 

                                                 
1 For brevity and where there is no ambiguity, we will refer to area (1) as “Diversity”, area (2) as “Cognitive”, area 
(3) as “Redundancy”, and area (4) as “Insider”. 
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optional learning component that records events observed by the monitor and actions taken by 
the actuator, and manages knowledge for better decision making in self-regeneration actions.    

Role of MLA.  The MLA loop can be found in all four technology areas of the SRS program.  
The MLA loop is represented in Figure 1 as yellow hexagons linked by connecting arrows.  The 
loop is most prominent in the Cognitive1 area, where four projects are building environments that 
support the monitoring, learning, and self-regeneration of application and system components to 
make them resilient against attacks.  The MLA loop is also a major structural component of the 
two projects in the Insider1 area, since such systems must observe the system behavior to detect 
and then counter insider attacks.  The loop is more implicit in the two “service” technology ar-
eas.  For example, the three projects in the Redundancy1 area provide redundant data delivery 
services to improve the availability and reliability of the entire system.  It is natural that these 
data services utilize MLA tools reflectively to improve their own availability and reliability.  
Similarly, the two projects in the Diversity1 area, which create program and data generation 
tools, can use MLA to avoid monoculture vulnerabilities in their own tools.    

The MLA loop primarily captures the self-regenerative aspect of SRS projects.  In the Diversity 
and Redundancy areas, the special capabilities provided by the projects are not necessarily self-
regenerative.  When discussing the inherent (non-self-regenerative) functionalities of compo-
nents in these areas, we refer to them as “tools”. 

Diversity Tools.  In the Diversity area, the projects will provide tools to create variants of binary 
representations of programs.  These variants should have sufficient differences among them so 
attacks that depend on specific bit-layout (e.g., typical buffer overflow attacks) would not work 
on all variants.  The variants are used by self-regenerative programs (e.g., in the Cognitive area), 
but the tools that generate the variants may be passive.  The degree of difference among the vari-
ants (and the associated resistance to attacks) is outside the scope of the MLA loop model.   

Redundancy Tools.  Similar to the Diversity Tools, the Redundancy area provides tools for data 
replication, object replication, and reliable communication, which have the capability to resist 
certain types of attacks through redundancy.  The performance and scalability of the specific re-
dundancy mechanisms, while important to the SRS program, is outside the scope of the MLA 
loop model. 
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2.2. RSRS Analysis of Cognitive Projects  
Cognitive MLA.  In the Cognitive Area, the self-regenerative healing process can be described 
using the MLA loop.  The three phases of self-regeneration (monitoring, learning, and regenera-
tion) are outlined in this section and illustrated in Figure 2. 

 

 
Figure 2 RSRS Architecture for the Cognitive Area 

 
Monitoring.  The first part of the Cognitive MLA is a monitoring service, which will monitor 
events at several time granularities and at different levels of system services.  This approach 
comes from the observation that system failures and malicious attacks may occur through events 
at all time scales and system levels.  Consequently, it is necessary for an SRS system to monitor 
the vital signs and anomalous events at several appropriate time scales and levels of abstraction.  
At each level of time scale and abstraction (e.g., hardware, kernel, middleware, and application 
process), the monitoring service will observe meaningful system states, compare them to accept-
able states (using potentially different models and techniques), and generate events if significant 
state changes are detected.   

Learning-Based Diagnosis.  The second part of the Cognitive MLA is a learning-based diagno-
sis service, which may vary according to the time scale of events and their level of abstraction.  
For example, diagnosis at the hardware and kernel levels may be based on control systems.  In 

 

Biologically-Inspired 
Diversity Tools (BID) 

 

Cognitive Immunity and Regeneration Environment 
(Learn/Repair, Model-Based, AWDRAT, Cortex) 

Applications Applications 

 
Granular, Scalable, 

Redundant Data 
Services (GSR) 

  

Monitor Learning Actuator 

Attacks Attacks 



 

 6

contrast, diagnosis at the middleware and application levels may rely on model-based reasoning 
or data mining techniques.  We use an abstract learning process to model the various learning-
based diagnosis services.  Abstractly, the events observed by the monitoring service are stored in 
an Events Database (ED), and the diagnosis process is a comparison of patterns in the ED with 
patterns previous learned and stored in a Known Events Database (KED).  The KED stores both 
significant event patterns (problems) and an appropriate response and defense for those prob-
lems.  In model-based systems, the KED captures the knowledge represented by the models.  The 
learning part of MLA is represented by addition of knowledge into KED.   

Regenerative Actuation.  The third part of the Cognitive MLA is a regenerative actuator, which 
finds and carries out the recovery actions specified by the KED.  For example, software updates 
may be available for a known virus using buffer overflow.  In this case, KED will contain the 
recipe to apply the software update, or send an updated copy of system software to the affected 
node.  If the problem is unknown (e.g., a new DoS or virus attack), then the Cognitive MLA en-
ters a sub-loop to build and find an effective regenerative action using two high level services: a 
program diversity service provided by the Diversity Area and a data redundancy service pro-
vided by the Redundancy Area.  The sub-loop will identify the extent of damage, create new 
system images to repair the damaged components, test them against the attack, find the variants 
that are effective against the attacks, store them in the KED, and distribute these variants in re-
generative actions. 

The sub-loop to search for remedies builds on the other SRS areas.  For example, the new system 
image variants are created by program diversity tools from the Diversity Area.  These variants 
may have been preventively generated beforehand, or dynamically generated at run-time.  Simi-
larly, trusted data and communications are provided by data redundancy services from the 
Redundancy Area.  Each variant is then tested by creating an environment with the new variant 
and exposing it to the environmental conditions during the attack.  If a new variant is shown to 
be resistant to the attack, it is entered into the KED and used to recover from the attack.  The en-
tire sub-loop may be online or offline, depending on the knowledge contained in the KED and 
the policies for recovery. 

Cognitive Projects.  Sophisticated software tools are being developed by the Cognitive area pro-
jects (Learn/Repair, Model-Based, AWDRAT, Cortex) that can be described by MLA loops.  
All of these projects have significant R&D efforts in monitoring, learning, and repairing of ap-
plications that run in their own environments.  Although these efforts are currently isolated in 
their own projects, their components may be made available and interoperable through a standard 
interface based on the MLA abstraction.  These tools can then be adopted by and integrated with 
other technology areas.  Three of the four Cognitive area projects (Model-Based, AWDRAT, Cor-
tex) employ model-based approaches where self regeneration is triggered by detection of 
deviations from a predictive model of the system.  We note that the model-based approach is a 
specialization of the MLA approach, where in the monitoring component, system behavior is 
compared against model outputs, in the learning component, the system model is dynamically 
updated based on actual system outputs, and in the actuator component, adaptation of the system 
is performed based on model deviations. 
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2.3. RSRS Analysis of Diversity Projects 
The Diversity area (Genesis and Dawson projects) develops code and data diversification tools 
that will be used by other areas and applications when attacks are detected.  In Figure 1, the Di-
versity tools are represented as purple ovals, typically used by the actuator component of an 
MLA loop.   

Figure 3 shows the RSRS architecture view of Diversity projects. 

The main goal of Diversity projects is to develop Diversity Component Tools (algorithms and 
software) to achieve design diversity and data diversity goals.  To measure the effectiveness of 
diversity algorithms, the evaluation steps can be modeled by an MLA-style loop.   

• Monitoring: After the variants are created, their resistance to attacks is evaluated.   

• Learning-Based Diagnosis: The winning variants are stored in a KED, while the losing 
variants are marked as such or discarded.   

• Regenerative Actuation: The winning variants are then used to increase system robust-
ness by replacing vulnerable components, possibly by a Cognitive component or system. 

 
Figure 3 RSRS Architecture of Diversity Area 
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2.4. RSRS Analysis of Redundancy Projects 
The Redundancy area projects develop highly-available services for communication, data stor-
age, and computation for use by other areas and applications.  For example, applications that run 
in a Cognitive Regeneration environment may have their communications and/or data flowing 
through channels created by the SAIIA, IITSR, or QuickSilver projects.  

Figure 4 shows the RSRS architecture view of Redundancy projects. 
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2.5. RSRS Analysis of Insider Projects 
The Insider technology area (PMOP and MIT-HDSM projects) consists of meta-level software 
tools that monitor system-level events and compare these events to a correct behavioral model or 
acceptable norm.  Their MLA loops contain significant monitoring components (many system 
and application events may be relevant), learning components (dynamic adaptation may be re-
quired when under insider threats, e.g., temporary adoption of more conservative security rules), 
and actuator components (e.g., generating and switching to a different set of program modules 
that implement a more restrictive set of rules to counteract the suspected threat).  The Insider 
area projects are represented as peach-colored ovals in Figure 1.   

Figure 5 shows the RSRS architecture view of Insider projects. 
 
 

 
Figure 5 RSRS Architecture for the Insider Area 
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3. Summary Evaluation of SRS Program 
In this section, we provide a summary evaluation of the current status of the SRS Program.  
Qualitatively, each project is compared to the core functionality of the topic area, and the unique 
features compared to each other.  We point out specific tools and components developed by the 
projects that can be useful in building self-regenerative systems.  We also point out where further 
work remains to be done before a comprehensive system can be built and demonstrated.  

Finally, we focus primarily on the capabilities and goals of current SRS projects in this proposal.  
However, it is likely that the current projects will not fill all the components of the RSRS archi-
tecture.  Furthermore, RSRS points the way to potential new building blocks, e.g., the capability 
of sites to dynamically generate and distribute new (diverse) code to handle newly discovered 
vulnerabilities.  This may involve techniques not addressed by current projects, such as the use 
of mobile code generation and management techniques.  This is a potentially interesting exten-
sion, whether using new techniques or existing mobile code platforms such as Java.  It is one of 
the objectives of this study to develop an architecture that enables additional SRS capabilities to 
be developed and integrated seamlessly with the suite of capabilities being explored by current 
projects. 

3.1. Summary Evaluation of Cognitive Projects 
Summary of Learn/Repair Evaluation.  The Learn/Repair project has a clear self-regenerative 
nature.  The scope of the Daikon tool is within a program, concerning the regeneration of de-
cayed data structures.  This technique can be applied by application programs to become more 
robust against internal data structure corruption.  Learn/Repair is the only project working on 
self-regenerative techniques applied inside a program. 
Summary of Model-Based Execution Evaluation.  The Model-Based Execution architecture 
contains a monitor that detects faults during execution by comparing the execution results 
against the predictions of a model.  Their Learning-Based Diagnosis module can define novel re-
covery actions for novel faults.  The system method dispatch module can cause methods to be 
self-regenerated through redundancy and/or self-optimized through decision-theoretic ap-
proaches.  The Model-Based Execution method may be applied to any application for which 
appropriate models can be created. 

Summary of AWDRAT Evaluation.  The AWDRAT system builds an architectural model of 
each method executed.  During the method execution, the model is evaluated concurrently and a 
monitor called Architectural Differencer compares the model against the method execution re-
sults.  If the Differencer finds discrepancies, the learning-based diagnosis module updates the 
trust model for future reference.  If damage is detected after differences are found, the regenera-
tive action restores necessary data to a consistent state.  The AWDRAT tools can be applied to 
any application for which appropriate models can be defined. 
Summary of Cortex Evaluation.  The Cortex project uses “Taster Databases” to find and filter 
out dangerous queries.  If bad queries cause damage to a Taster Database, that query is not for-
warded to the Master Database for actual processing.  The Cortex system learns to distinguish 
bad queries from normal queries, and reconfigures the system to switch off damaged databases 
as well as regenerating new replacements.  The Cortex system can be used by a self-healing 
monitor to protect Master Databases by managing the Taster Databases on behalf of the entire 
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system.  Cortex can generate self-regenerative SQL databases that could serve as components 
within larger self-regenerative systems.  
Comparison of Cognitive Projects (Figure 6).  At the program level, the Learn/Repair project is 
structurally different from the other three projects.  The AWDRAT and Model-Based Executive 
projects are similar in structure and in their model-based approach.  They differ in the application 
area chosen for the demonstration of the technology.  The Cortex project is structurally similar to 
AWDRAT and Model-Based Execution, but focuses on the SQL query as the application area. 

 

 
Figure 6 RSRS Architectural Comparison of Cognitive Projects 

 

3.2. Summary Evaluation of Diversity Projects 
Summary of Genesis Evaluation.  The Genesis project generates program variants using tech-
niques such as Calling Sequence Diversity and Instruction Set Randomization.  The program 
variants can be tested and shown to be resistant to specific attacks.  Some of the variants may 
also be immune to new attacks, for example, due to Instruction Set Randomization, which is dif-
ficult to guess.  The GENESIS tool may be used by a system-level self-regenerative actuator to 
replace vulnerable programs or components either before or after an attack has happened. 



 

 12

Summary of DAWSON Evaluation.  The DAWSON project generates program variants for the 
Windows environment using techniques such as variable location (stack/heap) randomization 
and address (DLL/IAT) randomization.  The program variants can be tested and shown to be re-
sistant to specific attacks.  The DAWSON tool may be used by a system-level self-regenerative 
actuator to replace vulnerable programs or components, in a Windows environment, either be-
fore or after an attack has happened. 
Comparison of Diversity Projects (Figure 7).  The two Diversity projects are structurally simi-
lar, but have different deliverables (different operating systems and system environment 
assumptions).  In addition, Genesis generates variants at multiple phases: compilation, linking, 
loading and run time, while Dawson creates variants from binary code. 

 

 
Figure 7 RSRS Architectural Comparison of Diversity Projects 

 

3.3. Summary Evaluation of Redundancy Projects 
Summary of SAIIA Evaluation.  The Steward wide-area object replication work is the most 
relevant to the SRS program.  It provides a useful technology to support intrusion-tolerant sys-
tems based on replication that are deployed across wide-area network environments.  Currently, 
the project has been primarily focused on achieving performance goals, as called for by the SRS 
program, rather than investigating self regeneration within a replicated environment.   There is a 
significant future opportunity to enhance object replication mechanisms, such as those studied 
in the SAIIA project, by adding internal self regeneration so that they can not only support 
larger self-regenerative systems but can also provide inherently self-regenerative replicated 
objects.   
Summary of IITSR Evaluation.  Currently, the IITSR project focuses primarily on providing 
supporting technologies for SRS.  An unexplored but extremely promising extension would be to 
provide a self-contained self-regenerative data store, i.e. to incorporate aspects of self regenera-
tion inside the data store itself.  Techniques for diagnosis, recovery, reconfiguration, and 
adaptation of Byzantine-fault-tolerant data access technologies have been studied in several 
(non-SRS) projects.  It should be possible to integrate these techniques with the types of tech-
nologies developed within IITSR to produce self-contained self-regenerative data stores.  Self-
contained self-regenerative components such as these could form building blocks from which 
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larger self-regenerative systems could be constructed.  Development of important self-
regenerative components such as a general-purpose data store would therefore constitute an ex-
tremely valuable contribution of the SRS program. 

Summary of QuickSilver Evaluation.  The Quicksilver technologies fit well within the RSRS 
architecture.  Important events, such as failures and intrusions that are detected at various levels 
by different monitors and sensors in the system, must be disseminated and processed using a sys-
tem such as Cayuga.  Applications communicate internally and externally using GSR 
communications mechanisms such as reliable multicast (SlingShot) and publish/subscribe 
(Quicksilver pub/sub).  In order to support the RSRS architecture, all of the communication and 
event processing must be done in a scalable and reliable manner, using technologies such as 
those developed in the Quicksilver project.  QuickSilver is the only SRS redundancy project fo-
cusing on scalable reliable communications services.  The other two redundancy projects 
(SAIIA and IITSR) are focused on data and/or object replication mechanisms, rather than com-
munication. 

Comparison of Redundancy Projects.  The three GSR projects are quite different in focus.  
SAIIA deals primarily with general object replication over wide-area networks.  IITSR focuses 
on data replication with some consideration of flat objects.  QuickSilver considers scalable and 
reliable communication.  None of the GSR projects has considered internal self-regenerative as-
pects in detail; instead, they have focused on obtaining the best performance while providing 
functionalities of use to a larger self-regenerative system.  Due to the redundant structures they 
employ, all of the projects have some capability to tolerate intrusions and attacks so long as they 
do not affect too many modules. 

3.4. Summary Evaluation of Insider Projects 
Summary of PMOP Evaluation.  The PMOP project uses an operator behavior monitor to 
compare the expected actions (as defined by an Operational System Model) with the actual op-
erations.  If deviations are found, the Harm Assessment Module checks whether the 
extraordinary actions are dangerous.  Dangerous actions go through Intent Assessment, which 
distinguishes malicious insider actions from operator errors.  PMOP tools may be used to ob-
serve any applications for which a good set of models can be defined (Operational System 
Model, Harm Model, Intent Model).   
Summary of HDSM Evaluation.  The HDSM project uses a large sensor network to collect be-
havioral information of operators.  These data are stored in a network history repository, based 
on which a high-dimensional search engine will learn to distinguish proper actions from insider 
threats.  An insider threat modeling and analysis tool builds models of insider knowledge acqui-
sition that precedes attacks.  A response engine performs impact analysis and synthesizes 
countermeasures that minimize potential damage.  HDSM tools may be used to observe and de-
tect insider threats provided appropriate sensors and models can be built and deployed for the 
operations being observed. 
Comparison of Insider Projects (Figure 8).  The two Insider projects are structurally similar, 
with more emphasis on data mining in the HDSM project. 
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Figure 8 RSRS Architectural Comparison of Insider Projects 

 

3.5. Summary of Potentially Useful Functionality from Current SRS Projects 

3.5.1. Self-Regeneration Within Program Modules 
Only one project: Learn/Repair of MIT, in the Cognitive area. 

3.5.2. Diversity Projects 
Creation of program variants with sufficient diversity to resist representation attacks (buffer 
overflow, etc). 

3.5.3. Redundancy Projects 
The following are useful functionalities created in the redundancy projects: 

• Wide-area object replication protocols, threshold cryptography library (SAIIA) 

• Data versioning, Byzantine protocols for read/write data, Byzantine protocols for 
query/update objects (IITSR) 

• Scalable event processing, scalable reliable multicast, scalable publish/subscribe proto-
cols (QuickSilver) 

3.5.4. Cognitive Projects 
Cognitive Projects 
(3 model-based) 

AWDRAT  Model-Based Execu-
tive 

Cortex 

Application Model OASIS DemVal 
(CAF) 

Robots MySQL 

Monitoring Model-based monitor 

 

Model-based monitor 
of intent and proce-
dures 

scalable coherent state 
estimation 

Diagnosis architectural differ-
encing, alternative 

Compare observations 
with predictions 

Attack recognizer 
(using probabilistic 
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variant selection  reasoning algo.) 

Learning automated model up-
date 

 

Automated develop-
ment of novel recovery 
methods for novel 
faults 

Online learning – sta-
tistical and structural 
learning algorithms 

Self-Regenerative  

Recovery 

Recover data, select 
variant, and reinstall 
code  

Damage assessment, 
contingency planning 
and execution 

Plan and response, 
Network  Filter Gen-
erator 

 

3.5.5. Insider Projects 
Insider Projects PMOP  HDSM 

Demonstration applica-
tions and scenarios 

OASIS DEMVAL MAF/CAF Human penetration followed 
by DDoS attacks, getting sen-
sitive military information 

Monitoring behavior monitor using the opera-
tional system model 

large scale sensor network  

Diagnosis harm assessment and intent as-
sessment 

high-dimensional search en-
gine 

Learning Refinement of operational system 
model, harm model, and intent 
model 

History repository and 
model/analysis tool  

Self-Regenerative  

Recovery 

Authorize or disallow actions that 
are not allowed by the operational 
system model 

Response engine 

 

3.6. Work Remaining 
From the preceding material, it is clear that the SRS program has developed an impressive set of 
technologies that are necessary for development of self-regenerative systems.  However, there 
are certain areas that still need to be addressed before the SRS technologies can be considered 
mature. 

The projects that deal with the cognitive function for self-regeneration at the system level are all 
model-based.  The model-based approach appears to be best suited for “single-application sys-
tems”, e.g. embedded systems such as autonomous robots and UAVs that are self contained and 
focused on a single mission.  For these types of systems, the development of a comprehensive 
model to describe the expected system behavior is a tractable problem and the model-based ap-
proach is a good one.  However, applying the model-based approach to a complex system such 
as a military data center or a networked set of distributed resources that are cooperating on a 
multi-pronged mission appears to be an unsolved problem and may, in fact, be intractable.   
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Another approach is necessary to provide cognitive self-regeneration for large complex systems.  
The approach must be capable of reasoning about events that are generated at multiple time 
scales and from multiple system levels and it must be scalable to very large system sizes.  We 
believe that the concept of reflection can be a guiding principle in the approach.  A reflective 
system is one that continuously monitors its own state and adapts its operation accordingly.  Re-
flection requires the ability to gather system state, the ability to reason about that state, and the 
ability to adapt system execution.  System state can be gathered by monitoring events at various 
system levels and extracting relevant state information from them.  This approach is shown in 
Figure 9, where events are gathered from monitors and sensors placed throughout the system and 
disseminated so that state information can be extracted.  State information can be either extracted 
at the system level or it can be extracted locally and aggregated to form a system-level view.  
Adaptation can be achieved through mechanisms such as diversity using the types of tools devel-
oped in the DAWSON and Genesis projects, and also through resource managers that provides 
dynamic allocation of resources to tasks based on system mission priorities and current system 
state.  Technology for this type of resource manager has been developed in the DARPA ARMS 
project (Adaptive Resource Management Systems).  A system-level resource manager of this 
type is shown in Figure 9 and labeled as “Cognitive/Reflective System Manager”.  Local re-
source managers can also make use of reflection, e.g. to add or remove replicas from a 
computation in order to either increase robustness or free up resources from a given task.  The 
final piece that needs to be developed to make this approach viable for SRS is the ability to rea-
son about system state.  One view of this process is that it involves inferring high-level state, 
such as “the system is under attack by a worm”, from lower-level state such as “within the past 
ten minutes five sites have stopped responding to all requests” at the same time that “intrusion 
detection alerts throughout the system have increased by 25%”.  In moving forward with the SRS 
Program, a focus on cognitive/reflective approaches of this type is necessary.  

Another area that must be addressed in moving forward with SRS is development of components 
based on SRS technologies.   With few exceptions, the current set of SRS projects have been de-
veloped as stand-alone systems and not as components, i.e. they have no well-defined interface 
by which other components can utilize them.  This could cause some problems for an integration 
effort based on these technologies.  Our initial goal was to try to standardize interfaces for differ-
ent project areas.  However, due to the lack of well-defined interfaces, we were not able to 
accomplish this.  Instead, what we have done is to define an event-based interface, which is sim-
ple but also quite general. This should enable a diverse set of technologies to be 
“componentized” easily and integrated together quickly for demonstration of a complete self-
regenerative system.  The high-level specification of this event-based interface is given in the 
next section, along with a second level of detail for redundancy area projects as an example of 
how the interface would be used. 

As mentioned previously, another opportunity for the SRS program to have impact would be to 
develop technology for some specific self-regenerative components, which could be used within 
larger systems.  For example, in the redundancy area, self-regenerative data stores and self-
regenerative objection replication components could be developed.   This would provide a valu-
able contribution to the field because it would provide some initial building blocks that could 
become the basis for larger self-regenerative system projects both within DARPA’s purview and 
in the broader community. 
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4. RSRS Interfaces 

One of the contributions of an architectural study is the capture of abstractions and definition of 
interfaces among the abstract components.  In the RSRS architecture, multiple levels of MLA in-
terfaces will be needed, as well as interfaces between the main components of the four 
technology areas.  For the purposes of this study, we separate the RSRS interfaces into two parts: 
the self-regenerative functionality interface and the inherent functionality interface. 

The self-regenerative functionality interface deals with interactions between components that are 
explicitly done for self regeneration purposes.  For example, information about failures or attacks 
that are detected by one component should be disseminated to other components in a standard 
form, so that the other components can take regenerative action.  Also, in some cases, it might be 
appropriate for components to be externally controlled, e.g. if there is a global resource manager 
controlling regeneration activities.  This part of the interface allows components to be controlled 
in a parameterized fashion for regenerative purposes.  It also allows components to specify re-
generative actions to be taken by other components.  

The inherent functionality interface applies primarily to components that are used as tools within 
an overall self-regenerative system.  This part deals with the inherent functional interface of 
those components, i.e. the portion that is not directly related to self regeneration.  For example, a 
data replication component might have data read/write and a set of metadata operations as its in-
herent interface.  A scalable communication component might have a publish/subscribe interface 
or a set of multicast operations or some other interface that deals only with the communication 
aspects but not with self regeneration. 

In the remainder of this section, we focus solely on the self-regenerative functionality interface, 
which we also refer to as the RSRS-functional interface.  The inherent functional interfaces of the 
components are quite specific to individual tools and have little or no impact on the SRS archi-
tecture nor the self regeneration process.  Standardizing the RSRS-functional interface across 
program areas and components will facilitate integration of the software produced by a diverse 
set of projects into a complete and cohesive SRS system. 

4.1. Structural View of RSRS Architecture 

Figure 9 depicts a structural view of the RSRS architecture applied to a single complex system, 
for example a military data center.  In this view, there is a system-level cognitive component, in-
stantiated by a cognitive/reflective system manager, which employs an MLA loop to monitor, 
learn, and regenerate at the system level.  There is also an event disseminator component, which 
disseminates, throughout the system, events that are detected by monitors, sensors, and special-
ized detectors such as IDS components. There are scalable multicast mechanisms for 
communication among application components and mechanisms for gathering system status in-
formation and distributing regeneration commands.  The MLA loops can be present within 
individual components and applications also.  The monitoring components and specialized detec-
tors can be viewed as a virtual sensor network, which generates data for the cognitive/reflective 
system manager to analyze.  This opens the interesting possibility of using high-dimensional 
search techniques, which have been proposed in SRS for mining data from large-scale sensor 
networks, to analyze this data for the purpose of system-level event detection and diagnosis. 
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There is also an opportunity to include self-regenerative components that might be developed in 
SRS, e.g. a self-regenerative data store to maintain the knowledge base used by the cogni-
tive/reflective system manager.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 Structural View of RSRS Architecture for Complex System 

Figure 10 illustrates the RSRS architecture applied to a system of complex systems, e.g. the Dis-
tributed Common Ground System (DCGS), where each node is itself a complex system of the 
type depicted in Figure 9.  In the RSRS system of systems architecture, each system performs lo-
cal event dissemination and analysis.  Any events that a system determines could be of interest to 
other systems are disseminated via a global event disseminator.  These events will be processed 
by the cognitive/reflective system managers on other systems as appropriate.  It is also possible 
that an entire node (or a portion of a node) is dedicated to analyzing events disseminated by the 
individual systems in order to detect global-scale events that can only be detected through identi-
fication of patterns of activity (event correlation) across the entire system of systems. An 
example of this type of global-scale event is a propagation-style attack, wherein similar suspi-
cious events would be seen on different systems in a time-correlated fashion.  As a concrete 
example, we could envision a military data center (or substantial processing resources from a 
military data center) being dedicated to analyzing events that are disseminated by individual sys-
tems within a DCGS environment. 
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Figure 10 Structural View of RSRS Architecture for System of Systems 

The structural views of the RSRS architecture shown in Figure 9 and Figure 10 provide a more 
concrete basis upon which to build interface specifications and to describe scenarios, such as the 
Time-Critical Targeting (TCT) scenario discussed later. 

4.2. RSRS Interfaces: Overview 

In keeping with the RSRS structural architecture, the RSRS-functional interfaces should be 
event-based, support a wide variety of event types and fields, and should also be extensible to al-
low applications to specify their own events.  At a minimum, the interfaces should support 
common SRS-relevant events such as hardware/software component failures, recognized attacks, 
discovered software vulnerabilities, and control events. Web services and XML are obvious can-
didates for implementing interfaces that fit these criteria.    In the following, we present skeletons 
for the RSRS-functional interfaces.  It is our intention that these skeletons be used to guide the 
further development of these interfaces during Phase 2 of the program.  Since most of the soft-
ware products being developed in Phase 1 are currently not designed as components with well-
defined external interfaces, development of detailed RSRS-functional interfaces is premature at 
this stage.  Nevertheless, the skeleton interfaces and concrete usage examples described in the 
remainder of this section should provide a roadmap for detailed interface development in Phase 
2. To the maximum degree possible, the different interfaces should be designed with common 
descriptions in order to standardize interactions between SRS components and with external enti-
ties as well.  The interfaces should capture the core SRS functionality of each project area, and 
permit mutual and recursive invocation of different SRS components.  Event-based interfaces al-
low information about failures, detected attacks, and control actions to be disseminated in a 
standard format (via GSR services) to relevant system components.   
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We include some basic interface data exchange formats here for illustration purposes.  At a 
minimum, the information generated and processed by MLA will include (among other data 
fields): 

• Event type field: [failure, attack, vulnerability, control] 
• Failure fields: [failed component name, failure category, failure cause (if known), failure 

time, failure duration (if relevant)] 
• Attack fields: [known/unknown, attack name (if known), attack category, attack time, at-

tack duration, attack target] 
• Vulnerability fields: [component name, module name, vulnerability category (if known)] 
• Control fields: [control target, action type, action parameters] 

These interface formats should be designed to be highly composable, e.g. a failure cause can be 
an attack, an attack target can be a vulnerability, etc.  Control events allow components such as a 
global resource manager to be placed within a central cognitive component to dynamically dis-
tribute resource allocation decisions to the controllers of different system components.  With this 
event-based approach, the basic interface operations are send and receive, which can be easily 
implemented with either publish/subscribe or message-passing systems.  This approach should 
enable the diverse set of SRS projects to be adapted quickly in order to work together.  

Event/Field Composition.  The interfaces should allow fields and events to be composed in 
flexible ways.  For example, a failure cause could be an attack (say a DoS attack that causes a 
server to crash or become unresponsive) and should allow the full specification of attack fields.  
Another example is that an attack target could be a known vulnerability and full information 
about the vulnerability should be included with the attack event.  In addition, each event should 
be tagged with the ID of the site that generated it.  At a higher level of abstraction, it is also de-
sirable for a lower system layer to report causally related events to a higher layer in an aggregate 
form. 

Extensibility of Events.  We note that each project will have its own models and unique features 
that demonstrate its research contributions.  The purpose of the standard interfaces is to provide a 
common ground of basic functionality that will be useful to the entire program.  Each project’s 
new capability or functionality can be added through customized extensions of these standard in-
terfaces.  Web service-style interfaces and XML-based data interchange will facilitate the 
incorporation of customized extensions.  Furthermore, the standard and customized interfaces 
will support the recursive/mutual use of component capabilities from other projects in the SRS 
program.  Standard interfaces will support alternative implementations of common functionality 
and customized interfaces will provide unique capabilities to other projects, whether they are in 
the same area or complementary areas. 

Relation to RSRS Structural Architecture. As depicted in Figure 9, failure, attack, and vulner-
ability events are generated by various RSRS components and are distributed throughout the 
system by the Event Disseminator, which is a GSR communication component optimized for 
event dissemination and processing.  Note that events can also be generated by non-SRS-specific 
components such as network-based or host-based intrusion detectors.  The RSRS structural ar-
chitecture and RSRS-functional interfaces allow such detectors to be integrated into the system.  
In the worst case, adaptors might be needed to translate outputs from generic detectors into stan-
dard RSRS format. The Cognitive/Reflective System Manager analyzes the event stream to 
determine what global regenerative actions need to be taken and it then distributes these actions 
to the appropriate software components via control events sent in the Control Plane.  Individual 
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software components can also query the event stream for relevant events and take their own local 
regenerative actions or request regeneration in other components. 

In the following, we give examples of how the different project areas could make use of an 
event-based interface, and we provide a first level of detail in a possible interface for 
Redundancy area projects. 

4.3. RSRS Interfaces and Cognitive Projects 
Event Example.   Consider an MLA loop created and maintained by a hypothetical Cognitive 
area project.  The data generation and processing steps could be the following: 

• Events are generated by plug-ins or monitor modules, and recorded by monitors. 
• Events are processed and stored by learning components, if present. 
• Events of broad interest (or aggregations of events) are disseminated via GSR services to 

other system components using the RSRS event-based interface 
• Recognized attack patterns in the event stream trigger self-regenerative actions that are 

distributed between SRS components using control events from the RSRS event-based 
interface: 

o Diversity area tools generate appropriately diverse replicas with input parameters 
shown in the above example (e.g., failure and attack information). 

o New replicas are installed, initialized, data consistency recovered, and synchro-
nized with other replicas.   

Processing resumes in the application, which is now resistant to this kind of attack.  In case of 
renewed attacks or failures, this step may be repeated with randomization to increase the chances 
of successful regeneration and recovery.  This example illustrates how Cognitive area projects 
can make use of an event-based interface to interact with other components and perform success-
ful regeneration while under attack. 

4.4. RSRS Interfaces and Diversity Projects 
Biodiversity components are essential pieces in the RSRS architecture.  They provide one of the 
main methods of resisting, and recovering from, attacks.  In terms of an event-based interface, 
biodiversity components can monitor the performance of their variants to learn of failures, at-
tacks, and vulnerabilities.  They can use this information internally to instantiate new variants 
with possibly different randomization parameters and can also disseminate this information to 
other components.  These event reports could contain information such as which variants are vul-
nerable and which are resistant to a given attack.  Similarly, they can receive reports from other 
components about failures and attacks and use the information to make local allocation deci-
sions.  In the case where a global controller/resource manager exists in the system, diversity 
components could also receive control events (commands) instructing them to take certain ac-
tions, e.g. create new variants or change randomization parameters. 

4.5. RSRS Interfaces: Usage Examples for Redundancy Projects 
The primary event types that we foresee being used by Redundancy area projects are failure, at-
tack, and control.  Data-replication-based diagnosis algorithms would make use of an event-
based interface to notify other RSRS components of failure occurrences through the following 
fields: 
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• component name – failed servers can be identified by name (or IP address); distribution 
of this information to other RSRS components would allow them to optimize their data 
access patterns 

• failure category – categories include, among others, crash fault, timing violation, data in-
tegrity failure, and Byzantine failure; this information could be used, for example, by the 
MLA loop within a Cognitive area project as part of system-wide event correlation to 
identify distributed attacks 

• failure cause – identification of failure causes is highly dependent on system architecture 
and hardware/software configurations; examples of causes that could be determined by 
data-replication-based mechanisms are a DoS attack causing a server (or servers) to ex-
hibit crash or timing failure symptoms, and local hardware/software problems causing 
multiple servers in the same subnet to experience simultaneous failures 

• failure time – the time of the first observed failure symptom; this could be used, for ex-
ample, by version-based recovery to determine which prior version to install 

Intrusion and anomaly detection mechanisms, used in conjunction with Replication area projects, 
would make use of an event-based interface to notify other RSRS components of detected attacks 
via the following fields: 

• known/unknown – recognized attacks, using e.g. signature-based techniques, would be 
classified as known; previously unseen anomalies would be classified as unknown 

• name – names of known attacks would be distributed from Redundancy area components 
to other RSRS components; this could be used to trigger preset response scenarios by re-
generative actuators in other components 

• category – attack categories are virtually unlimited; general categories include confiden-
tiality, integrity, and availability; specific categories include known attack types such as 
DoS, DDoS, man in the middle, spoofing, ARP poisoning, etc. 

• time and duration – the time of the first observed symptoms and the duration if the symp-
toms have subsided could be used by higher-level mechanisms to analyze system-wide 
attack behavior 

• target – if possible, names or IP addresses of nodes that are under attack could be dis-
seminated 

Failure and attack events could also be sent to Redundancy area components, for use by local 
controllers.  Failures and attacks observed by other RSRS components could be used, for exam-
ple, to dynamically modify replica configurations or adjust replication parameters.  Local 
controllers could also request more resources from a resource manager component in response to 
failure or attack notification.  

Control events could be used by Replication area projects to interact with components such as a 
global resource/configuration manager.  Examples of control events that could be sent by a Rep-
lication component are requests to remove failed servers from active configurations, and requests 
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to allocate additional servers either to increase resiliency or to replace failed servers. External 
controllers could send control events to Replication area components to force them to reconfig-
ure, give up resources, or take other local actions that are necessary for overall system health. 

4.6. RSRS Interfaces and Insider Projects 
As an illustrative example, we will outline the external invocations of the Reasoning About In-
sider Threats topic area (abbreviated as “Insider”).  An Insider component will contain an MLA 
loop to detect unusual activity that may indicate an attack and leading to reactive actions to such 
threats.  When detecting an attack and damage, this MLA loop (the actuator) of the Insider com-
ponent may send a failure notification event to a Cognitive Immunity and Regenerative 
Environment (abbreviated as “Cognitive”) component causing it to regenerate a destroyed part of 
the system.  In turn, the Cognitive component may send a control event to a Biologically-
Inspired Diversity Tool instructing it to regenerate the damaged software modules.  All the 
communications among the components may use a Granular, Scalable Redundant Data Service 
to increase the robustness of communications since the system is under attack.   Similarly, each 
component may contain its own MLA loop to detect and recover from failures and attacks.   

Note that, as depicted in the RSRS Structural Architecture, the monitoring elements within the 
MLA loops of different SRS components can be thought of as virtual sensors, or software sen-
sors.  Thus, the event streams from these monitoring elements and non-SRS-specific components 
such as intrusion detectors constitute a type of virtual sensor network.  This facilitates the use of 
high-dimensional search techniques designed to mitigate insider threats using large-scale sensor 
networks, such as those being developed in Phase 1 by the HDSM project.   

5. Discussion of SRS Deployment for the TCT Scenario 
The following scenarios are illustrative examples that show potential applications of SRS tech-
niques and tools in military situations.  These discussions are in the context of an SRS Phase II 
program (Self-Regenerative Systems, Phase II). 

5.1. TCT Illustrative Scenario 
TCT Scenario.  We will illustrate the military relevance of SRS research through a simplified 
scenario based on Time-Critical Targeting (TCT).  TCT is an Air Force initiative building on 
fundamental capabilities such as CAOC (Combined Aerospace Operations Center), Predictive 
Battlespace Awareness, and Data Links.  The goal of TCT is to find, fix, target, and engage valu-
able and perhaps mobile targets (e.g., mobile rocket launch platforms) in a single-digit number of 
minutes.  A more concrete (and hypothetical) scenario is the following.  Consider a tentative 
identification of a convoy moving away from an area with recent and current insurgent activities 
in Iraq desert.  This is done by automatic target recognition software in a routine UAV surveil-
lance video.  High resolution satellite images are taken and the convoy’s presence is confirmed.  
A TCT operation is initiated to stop and destroy the convoy before it can disperse or hide.  This 
is a scenario typical of programs such as AMSTE (Affordable Moving Surface Target Engage-
ment), where moving targets are discovered and tracked by long range GMTI (Ground Moving 
Target Indication) sensors and rapidly engaged with precision, stand-off weapons.    For con-
creteness we will assign the task of identifying a potential target, fusing the information, and 
estimating its certainty primarily to DCGS (Distributed Common Ground/Surface Systems).  
This somewhat arbitrary assignment is due to the lack of detailed open literature description of 
programs such as TCT and AMSTE. 
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Figure 11 Command Post Scenario 

 

Information Flow in TCT.  DCGS is a family of systems capable of receiving, processing, ex-
ploiting, and disseminating intelligence in support of a Joint Force Commander.  The AF DCGS 
is a worldwide distributed, network-centric, system-of-systems architecture designed to conduct 
collaborative intelligence operations by the Air Force.  DCGS objectives include receiving im-
agery at ground and surface systems from national and tactical sensors and exchanging 
intelligence among the participants, for example, of an operation involving TCT.  One of the ma-
jor problems in such situations is the relatively long information flow and processing pipeline, 
which makes the TCT process vulnerable to attacks on any one of the system components.  In 
our scenario, the convoy needs to be evaluated.  First, it should be identified as friend or foe.  
Second, its value as a target should be established.  Third, appropriate attack methods and means 
will be decided and resources allocated for the planned mission.  Fourth, necessary information 
needs to flow up the command chain to obtain the authorization required for each mission.  Fifth, 
an authorized mission should be carried out according to the plan, by distributing the sub-tasks to 
each unit responsible for carrying out the sub-task.  Sixth, the completion status of each sub-task 
and of the entire mission such as damage assessment need to be sent back to the Command Post 
for the evaluation of the mission and of the entire battlefield. 

The TCT scenario is summarized below in 12 steps. 

1. TCT tasks are underway when a non-critical display application reports a data structure 
corruption event; the data structure is automatically repaired and the application contin-
ues; a few minutes later, another corruption is reported and repaired, although the 
application is forced to display at a lower resolution. 

2. The RSRS cognitive/reflective component queries DCGS event streams for recent reports 
and notes that a larger-than-expected number of workstation crashes have occurred over 
the last 15 minute period. 
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3. The cognitive/reflective component then receives a report of errors from a replica, which 
is running a critical TCT task and is hosted on the same workstation as the display appli-
cation.  

4. A short time later, the workstation hosting the replica and display application crashes.  

5. Critical applications use reconfigurable objects, so the system automatically starts a new 
replica on another workstation. 

6. The RSRS high-dimensional search module is activated to analyze recent log and other 
event data within the Operations Center. 

7. The search reveals unusual activity on the Operations Center gateway and a connection 
from the gateway to the crashed machine via a rarely-used port shortly before data cor-
ruption began. 

8. The cognitive/reflective component also notes that the application using the port is on the 
list of applications that interact with the display application 

9. The RSRS actuator takes the following actions: 

• It disseminates its analysis results (suspected application and port) to all other 
data/command/operations centers via DCGS. 

• It temporarily disconnects the Operations Center from DCGS and shuts down the 
gateway. 

• It reboots the failed workstation and disables the suspected application and port on all 
workstations. 

10. Another data center, after seeing the Operations Center report, is able to capture and ana-
lyze the attack. 

11. The attack info is then used by a bio-diversity generator to create a resistant variant of the 
targeted application, which it distributes to other centers via DCGS. 

12.  Once the TCT operation is completed, RSRS reconnects the Operations Center to 
DCGS, receives and installs the new variant on all machines, and reopens the closed 
ports. 

5.2. Application of SRS Technology to TCT Scenario 
This section can be retold from the TCT scenario point of view, along the information flow pipe-
line.  This way, the applicable tools are applied for each stage of the pipeline.  There will be 
some redundancy in this text organization, since some tools (e.g., diversity generators) can be 
applied to every stage of the information flow pipeline. 

5.2.1. Self-Regeneration within Program Modules 
[Functionality summarized in Section 3.5.1]  The Daikon tool (Learn/Repair project) can be used 
to keep critical application and system programs running through the TCT information flow 
pipeline, e.g., the Automatic Target Recognition program used to identify the convoy, the friend-
or-foe identification program, and so on. 
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5.2.2. Diversity Projects 
[Functionality summarized in Section 3.5.2] Both variant generators (from the Genesis project 
and the DAWSON project) can provide variants of critical application and system programs that 
are resistant to known or new attacks.  This can be done proactively, by mandating a certain level 
of diversity before attacks have happened, or reactively, in response to attacks such as the Slam-
mer.  These diversity tools can be applied to any or all of the programs along the TCT 
information flow pipeline. 

5.2.3. Redundancy Projects 
[Functionality summarized in Section 3.5.3]  As a globally distributed system, DCGS needs ro-
bust communications mechanisms provided by QuickSilver (Cornell/Raytheon): 

• Scalable event processing, scalable reliable multicast, scalable publish/subscribe proto-
cols (QuickSilver), robust scalable communications 

In addition, DCGS will also require reliable data storage services provided by SAIIA (JHU) and 
IITSR: 

• Wide-area object replication protocols, threshold cryptography library (SAIIA), corrup-
tion extent determiner 

• Data versioning, Byzantine protocols for read/write data, Byzantine protocols for 
query/update objects (IITSR), scalable redundancy read/write distributed data stor-
age 

5.2.4. Cognitive Projects 
[Functionality summarized in Section 3.5.4]  The three other projects in the Cognitive area are 
model-based or application-specific.   

• AWDRAT will be demonstrated on OASIS DEMVAL (MAF/CAF GUI component).   

• Model-Based Executive will be demonstrated on their robot environment.   

• Cortex will be demonstrated on groups of MySQL databases. 

Each project contains components that will monitor the application behavior, diagnose any prob-
lems (using learning techniques to anticipate new problems), generate solution plans for the 
problems, and carry out the solution using self-regenerative techniques.   

In the TCT scenario, AWDRAT could be used to instrument some GUI (or other application) 
programs in communicating the Automated Target Recognition results to operators.  If any de-
viations are detected, then those programs may have been compromised and they should be 
corrected.  Similarly, Model-Based Executive could be used to instrument UAV or other sensor 
software, so their behavior can be observed and failures/deviations can be corrected automati-
cally by software, complementing human operator guidance of the UAVs.  This can be very 
useful when the number of sensors grows and exceeds the human monitoring capability.  Finally, 
Cortex tools may be used to instrument backend databases for automated application tasks (e.g., 
for friend-or-foe recognition in a large coalition, mission planning with options, and workflow to 
obtain authorizations) to automate and mask the recovery from attacks or software failures of the 
database component. 



 

 27

5.2.5. Insider Projects 
[Functionality summarized in Section 3.5.5]  In a protected environment such as DCGS, insider 
attacks are a major concern.  Both PMOP and HDSM will monitor operator behavior, compare it 
against a model, learn from the history, and decide whether to allow or disallow anomalous be-
havior.   

PMOP has more explicit models of operational system, harm assessment, and intent assessment.  
These models distinguish (at an increasing level of sophistication) a malicious insider from op-
erator errors.  These models can be used to detect situations where a malicious insider operator 
may be trying to derail a TCT mission through abnormal interference, so such non-authorized in-
terference can be stopped. 

HDSM has a large sensor network and powerful high dimensional search engines that can learn 
and detect abnormal behaviors for a variety of applications and situations.  Their demonstration 
includes human attackers penetrating machines to obtain sensitive military information or to 
launch distributed denial of service attacks.  With sufficient training, these attacks can be de-
tected at the initial stage (penetration) and stopped before that stage is successfully completed.  
The HDSM system can be demonstrated on a large distributed system such as DCGS to detect 
any problems covered by its sensor network. 

5.2.6. Potentially Useful SRS Technology Not Addressed by TCT Scenario 
The self-regeneration concepts and techniques being developed by the SRS program (and else-
where) could be useful in some other ways for the TCT information flow pipeline. 

• A system-wide cognitive SRS monitor that can replace failed components or entire sub-
systems. 

• Broad definition of SRS: self-regeneration including/complementing reconfiguration 
techniques for fault-tolerance. 
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6. Discussion of SRS Deployment for the Aegis Scenario 

6.1. Aegis Surface Combat System Scenario 

 
Figure 12 Typical Surface Combat System 

 

Generally, weapons systems follow a design pattern comprised of three abstract fundamental 
functional areas:  SENSE, CONTROL, and ENGAGE.  These elements, briefly summarized, are: 

• SENSE:  Continually search for targets.  A radar system that scans the area around a ship 
is an example in which the search function actively probes high-priority portions of the 
physical space.  The search function may encompass multiple sensors (e.g., radar, lidar, 
infra red, magnetic resonance), in which case differing sensor outputs need to be com-
bined.  Data streams from sensors feed into a detection function that produces a stream of 
contact reports and predictions about contacts’ likely future positions.  Additionally, the 
SENSE functional area includes support for monitoring the engagement of weapons onto 
contacts. 

• CONTROL:  Consume contact reports and predictions from the SENSE functional area, 
perform identification on the contacts, evaluate their status if they are being engaged, pri-
oritize them, predict the outcomes of engagement decisions, pair weapons and contacts, 
and configure the SENSE functions. 

• ENGAGE:  Receive contact and weapon information from the CONTROL functional 
area, and contact information from the SENSE functional area.  Schedule the application 
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of weapons, compute fire control solution, prepare weapons, release weapons, and pro-
vide any necessary guidance for weapons in flight. 

Figure 12 depicts a typical naval surface combat system such as the Aegis.  An engagement 
process begins with the sensor finding a contact and delivering the “track data” to the “com-
mand and decision system” which updates a shared data base (the track file).  An operator will 
typically oversee the “command and decision system” and manage by negation, which means 
observing the automated decisions the system makes and intervening only when necessary.  
“Mode control” messages return to the “sensor control” module to refine the sensor’s operation 
to remove ambiguity and provide “fine track” information needed by the weapons control system 
(which itself also may have a human operator).  The “display group” graphically portrays the 
data to the officers who are legally enabled to make engagement decisions.  Such a decision then 
is forwarded to the “weapons control system” which both launches the weapon and monitors its 
operation in cooperation with the command and decision system. 

The Aegis application is extremely sensitive to timing requirements.  The radar and its sensor 
control module must provide contact records with low latency to the command and decision sys-
tem, on the order of 1-10 ms.  A contact usually comprises a few hundred bytes.  As an example, 
the processing flow could comprise 47 messages per second with 516 bytes per message.  The 
“sensor control”, “command and decision system” and “weapons control system” have real 
time requirements in the millisecond range.   

6.2. General Research Challenges of the Aegis Scenario 

6.2.1. Related to millisecond real-time requirements 
From the RSRS point of view, the MLA loop (monitor-learning-actuator) happens in each area 
of the Sense-Control-Engage pattern.  In the Sense area, the monitoring is accompanied by learn-
ing, which identifies the critical attack patterns, and the actuator adjusts the sensors to sharpen 
their sensitivity to (and detection latency of) the critical attack patterns.  In the Control area, con-
tact reports and attack predictions from the Sense area are analyzed (the monitor part), their 
threat level assessed (with a learning part that reduces false positives and establishes priorities), 
and the weapons allocation decisions communicated to the Engage area (the actuator part).  In 
the Engage area, both the contact and the weapons information are analyzed (the monitor part), 
the allocation among them optimized (through deterministic algorithms or through learning), and 
the decisions carried out (the actuator part).   

The major research challenge for SRS Phase II presented by the Aegis scenario (referred to sim-
ply as “Aegis” in the rest of the section) is the real-time requirements at the millisecond range.  
The real-time requirements impose new challenges on SRS Phase II performers, since the SRS 
tools have not been developed to satisfy such stringent real-time constraints.  Several significant 
modifications are required for SRS tools to be effective in Aegis.  For example, the learning 
phase of MLA loop should be carried out in parallel, outside the critical path between the moni-
tors and actuators.  A second example is that the critical path between and including the monitors 
and actuators must be shrunk to the millisecond range.  This means that any monitoring or actu-
ating processes that need more than a few milliseconds will affect negatively the effectiveness of 
those SRS tools in Aegis.   

The lack of time for an accurate diagnosis of the situation affects the Cognitive and Insider pro-
jects significantly, since their main goal is to determine what the problem is (through monitoring 
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and learning).  For example, one of the major challenges for model-based approaches (in both 
Cognitive and Insider areas) is the difficulty to generalize their results beyond the model, a seri-
ous problem with a prescribed scenario such as Aegis.  With the real-time requirements, another 
major technical challenge for model-based approaches is to “compile” the model (even if limited 
in some sense) into very fast programs that can make good decisions within the millisecond 
range.  (This is also related to the need to separate the learning process into an offline task.) 

SRS Phase II Requirements.  In BAA 06-35, new success criteria have been defined.  The fol-
lowing are related to timing constraints: 

• Diversity: new variants can be generated rapidly, i.e., in < 1 second. 

• Cognitive: generate responses within 250 milliseconds of attacks. 

• Redundancy and Insider: no explicit timing requirements, although compatibility with the 
above timing constraints is assumed. 

6.2.2. Related to self-regeneration (diversity and redundancy) 
In terms of self-regeneration, a major concrete consequence of modifications above is the re-
quirement for offline pre-generation and pre-loading of useful variants by SRS Phase II tools.  
This requirement seems feasible for the Diversity and Redundancy projects (Sections 3.5.2 and 
3.5.3), but more difficult for Cognitive, Insider, and Within-Program projects (Sections 3.5.1, 
3.5.4, and 3.5.5).  The pre-loading requirement creates the second concrete consequence, which 
is the lack of time to diagnose the attack and therefore the pre-loaded variant has to anticipate the 
kind of attack during its generation time.  For new and unknown attacks, the lack of time for di-
agnosis will test the SRS Phase II tools’ capabilities to pre-generate sufficiently useful variants 
that are different enough to resist unknown attacks before the diagnosis processes are completed. 

Depending on the time required for switching on the pre-loaded variants, the variants can run as 
warm standby (lowest execution overhead, but slowest switch-on time), hot standby (medium 
execution overhead and medium switch-on time), or a concurrent execution with voting quorum 
(highest execution overhead, but fastest switch-on).  Since warm standby seems unlikely to sat-
isfy millisecond real-time requirements, we focus on hot standby and concurrent execution.  For 
hot standby, the concurrent replay by the standby variants may or may not suffice to achieve data 
consistency maintenance among the variants, since explicit synchronization between the variants 
may be necessary unless we make the expensive assumption that complete serialized execution 
log records for the variants will be always in the exact same order.  The “continuous” consis-
tency requirement (or millisecond range lag) is non-trivial to satisfy, both across programs or 
within a program (e.g., the consistency check cycle of Daikon).   

For concurrent execution of variants with voting on the results, new problems arise.  For exam-
ple, the execution speed of variants become a significant problem in voting, which will be 
dominated by the slowest voter.  If variants have very different execution speeds, the entire sys-
tem will be slowed down considerably.  This is a problem for some current Diversity tools, 
which create variants that execute several times slower.  Another serious research issue is the de-
termination of which variants are executing correctly, since the majority may not always be right. 
Another challenge is to ensure that different variants do not introduce non-determinism that 
would violate the strong consistency requirements of software-replication-based voting tech-
niques.    



 

 31

Beyond the main memory consistency problem, it is also unclear whether the current SRS repli-
cation tools will be sufficient when databases or files are being shared with other applications.  
For a demonstration program, it may suffice to use replicated data that is exclusively accessed by 
the demo application. 

6.2.3. Basis for Confidence 
The discussion in the previous subsection describes some of the research challenges due to the 
combination of real-time requirements and work required in the regeneration process during the 
Sense-Control-Engage process.  There are several reasons that these requirements may be satis-
fied simultaneously.  For example, much of the regeneration work can be done before the actual 
regeneration event, including the pre-generation of variants and pre-loading of variants into 
memory in the hot-standby and concurrent execution with voting scenarios.   

The issue of real-time monitoring and diagnosis of attacks is more complex.  Accurate diagnosis 
in real-time is not easy and errors have serious consequences.  False negatives cause downtime 
and false positives cause self denial of service due to frequent switches.  However, a model-
based approach could conceivably build an attack model offline for demonstration purposes.  
This has been described by the model-based projects in the program.  These pre-built models will 
be limited by the knowledge they contain, so they may or may not be able to diagnose unknown 
attacks in real-time.  Although non-trivial, the problem is not hopeless.  There are several possi-
bilities that we enumerate here as feasible, although somewhat speculative, research challenges 
for SRS Phase II. 

One approach to diagnosis is to use sufficient diversity in a shotgun approach, as an alternative 
to accurate diagnosis.  If sufficiently diverse variants can be pre-generated and pre-loaded, then it 
is possible that new attacks may be countered by some of these variants.  The difficulty in this 
shotgun approach is the need to generate “sufficiently diverse” variants, which is a serious and 
new research challenge. 

Another approach to diagnosis is to use the potential results from other DARPA programs such 
as Application Communities, where one part of the community may be attacked and provide in-
formation for diagnosis of the attack.  The diagnosis information may be used by other parts of 
community before the attack has reached them.  If SRS Phase II tools are able to use the diagno-
sis information to generate attack-resistant variants and pre-load them as either hot-standby or 
concurrent execution voters, then it may be reasonable to assume that accurate real-time diagno-
sis will come from some other source, e.g., Application Communities program. 

Another serious research for SRS Phase II tools is the consistency maintenance among the vari-
ants.  There are some feasible approaches that should be explored and evaluated.  For example, 
hot standby with completely serialized execution log and completely replicated data should be 
evaluated with respect to the synchronization time.  Further, the costs of completely reliable log-
ging and distribution of serialized log should also be evaluated.  Similarly, concurrent execution 
voting variants also need to be evaluated with respect to synchronization time and consistency 
maintenance costs.  It is also possible to assume asynchronous periodic checkpoint for another 
kind of hot standby in specific areas, e.g., during the ENGAGE phase. 

6.2.4. Linkage with Other Programs 
In addition to SRS (Phase 1), SRS Phase II projects may benefit from interacting with two other 
programs.  First, the Application Communities program is developing techniques to monitor at-
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tacks and share the monitoring and diagnosis results quickly.  This kind of diagnosis and progno-
sis information will be invaluable for SRS Phase II software tools in Aegis, which have little 
time of their own for accurate diagnosis. 

Another program that may provide significant advantages to SRS Phase II projects is the Hyper-
D software environment, which can be used for demonstration, integration, quantitative evalua-
tion, and validation of SRS Phase II tools.   

6.3. Application of SRS Techniques to the Aegis/Hyper-D Scenario 

6.3.1. SRS Techniques within Program Modules 
[Functionality summarized in Section 3.5.1]  The Daikon tool (Learn/Repair project) can be used 
to keep critical application and system programs running through Aegis the Sense-Control-
Engage information flow pipeline, e.g., the “sensor control”, “command and decision system” 
and “weapons control system”, and so on.   

The millisecond-range real-time requirements will be a significant challenge to SRS tools, since 
the regeneration process needs to be done somehow within the severe time constraints.  In case 
of the Daikon tool, the current cycle for detecting a problem and correcting it seems to be at the 
time frame of about a second.  Since the detection and repair processes cannot be made offline, it 
is unclear how their approach can work effectively in Aegis. 

Specifically for Daikon, there is an additional requirement for the Aegis scenario.  The decision 
to engage depends on the assumption of a correct identification of the incoming target.  When 
the Daikon tool repairs damaged data structures, it is not always guaranteed that the results are 
“correct” from the application point of view.  Consequently, the Sense-Control-Engage pipeline 
needs to be marked with Daikon repair caveats, even when it’s done within the time constraints. 

6.3.2. SRS Techniques in Diversity Projects 
[Functionality summarized in Section 3.5.2] Both variant generators (from the Genesis project 
and the DAWSON project) can provide variants of critical application and system programs that 
are resistant to known or new attacks.  This can be done proactively, by mandating a certain level 
of diversity before attacks have happened, or reactively, in response to attacks such as the Slam-
mer.  These diversity tools can be applied to any or all of the programs along the Aegis Sense-
Control-Engage information flow pipeline.   

The BAA 06-35 mandates the generation of new variants to be less than a second.  This require-
ment may be alleviated if the generation of new variants can be parallelized (to increase 
throughput) and carried out in anticipation of the attack (to decrease response time).  For the Ae-
gis scenario, due to the millisecond response time requirements, the pre-generation and pre-
loading are required in any case. 

The millisecond-range real-time requirements may be a significant challenge to SRS Phase I 
tools, since the regeneration process needs to be done somehow within the severe time con-
straints.  The current setup of program variant replacement in both Genesis and DAWSON seem 
to require loading the new variant from the file system and re-initialization of the new variant.  
As an optimization to bypass the loading phase latency, the new variants will need to be pre-
loaded into main memory, and activated as needed (a warm standby).  As a further optimization, 
these new variants may be executed concurrently (a hot standby) and results voted, if full repli-
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cated and concurrent processing is required.  This would be the case if the re-processing would 
cause the system to miss its original deadlines.  Concurrent processing may also be desirable 
simply to speed up the Sense-Control-Engage pipeline, since an incoming target must be dealt 
with as soon as possible. 

6.3.3. SRS Techniques in Redundancy Projects 
[Functionality summarized in Section 3.5.3]  As a tightly integrated networked system, the Aegis 
Sense-Control-Engage information pipeline can benefit from robust communications mecha-
nisms provided by QuickSilver (Cornell/Raytheon): 

• Scalable event processing, scalable reliable multicast, scalable publish/subscribe proto-
cols (QuickSilver), robust scalable communications 

In addition, the Sense-Control-Engage information pipeline can also benefit from reliable data 
storage services provided by SAIIA (JHU) and IITSR: 

• Wide-area object replication protocols, threshold cryptography library (SAIIA), corrup-
tion extent determiner 

• Data versioning, Byzantine protocols for read/write data, Byzantine protocols for 
query/update objects (IITSR), scalable redundancy read/write distributed data stor-
age 

6.3.4. SRS Techniques in Cognitive Projects 
[Functionality summarized in Section 3.5.4]  The three other projects in the Cognitive area are 
model-based or application-specific.   

• AWDRAT will be demonstrated on OASIS DEMVAL (MAF/CAF GUI component).   

• Model-Based Executive will be demonstrated on their robot environment.   

• Cortex will be demonstrated on groups of MySQL databases. 

Each project contains components that will monitor the application behavior, diagnose any prob-
lems (using learning techniques to anticipate new problems), generate solution plans for the 
problems, and carry out the solution using self-regenerative techniques.  The main challenge for 
the model-based approaches is their ability to adapt the approach and create a model for the pre-
scribed Aegis scenario.  The potential contributions of these projects to SRS Phase II seem to 
depend on whether they are able to leverage on the previous model when building a new model 
for demonstrating and validating their technique in Aegis. 

In the Aegis Sense-Control-Engage information pipeline, AWDRAT could be used to instrument 
some GUI (or other application) programs in the Control and Engage functions, e.g., operators 
that manage the process by negation as described earlier.  If any deviations are detected, then 
those programs may have been compromised and they should be corrected.  Similarly, Model-
Based Executive could be used to instrument the Sensing systems, so their behavior can be ob-
served and failures/deviations can be corrected automatically by software, complementing 
human operator oversight.  This can be very useful when the number of incoming targets grows 
to a point of exceeding the human monitoring capability.  Finally, Cortex tools may be used to 
instrument backend databases (e.g., the track file) for automated application tasks (e.g., for 
friend-or-foe recognition in a large coalition, mission planning with options, and workflow to ob-



 

 34

tain authorizations) to automate and mask the recovery from attacks or software failures of the 
database component. 

BAA 06-35 mandates the response to attacks to be generated within 250 milliseconds of the at-
tack.  This is a significant challenge to the Cognitive projects, since that kind of response time is 
not necessarily an integral part of their original application environment (GUI, robot, and data-
base).  However, in principle the demonstration applications would not be prevented from being 
augmented with shortcuts that can achieve millisecond response for specific situations. 

6.3.5. SRS Techniques in Insider Projects 
[Functionality summarized in Section 3.5.5]  In a protected environment such as the Aegis 
Sense-Control-Engage information pipeline, insider attacks are a major concern.  Both PMOP 
and HDSM will monitor operator behavior, compare it against a model, learn from the history, 
and decide whether to allow or disallow anomalous behavior.  The main challenge for the model-
based approaches is their ability to adapt the approach and create a model for the prescribed Ae-
gis scenario.  The potential contributions of these projects to SRS Phase II seem to depend on 
whether they are able to leverage on the previous model when building a new model for demon-
strating and validating their technique in Aegis. 

PMOP has more explicit models of operational system, harm assessment, and intent assessment.  
These models distinguish (at an increasing level of sophistication) a malicious insider from op-
erator errors.  These models can be used to detect situations where a malicious insider operator 
may be trying to negate appropriate Aegis defensive actions through abnormal interference, so 
such non-authorized interference can be stopped.  (This is a controversial topic since the issue of 
what an operator is or is not allowed to do has been debated for a long time, with valid argu-
ments both ways.) 

HDSM has a large sensor network and powerful high dimensional search engines that can learn 
and detect abnormal behaviors for a variety of applications and situations.  Their demonstration 
includes human attackers penetrating machines to obtain sensitive military information or to 
launch distributed denial of service attacks.  With sufficient training, these attacks can be de-
tected at the initial stage (penetration) and stopped before that stage is successfully completed.  
The HDSM system can be demonstrated on a large distributed system such as Aegis Sense-
Control-Engage information pipeline to detect any problems covered by its sensor network.  
However, the training period of HDSM probably needs to be done before deployment, since the 
millisecond timing constraints of Aegis would not allow real-time training. 

6.3.6. Self-Regenerative Service for Aegis 
The idea being pursued by the SRS team is the construction of a “self-regenerative service”, 
which would be a system of manageable size with API's, algorithm complexity, and quality of 
service requirements inspired by the needs of real systems.  The outputs of this phase would be:  

1. evaluation of the prototype service against the motivating system-level goals of SRS re-
garding non-blink service and regeneration and automatic improvement over time,  

2. assessment of the current SRS technical areas, and  
3. pointers to additional technical areas, if necessary.   

If the prototype service is sufficiently similar to the class of combat systems in the most important 
aspects, hopefully the SRS team will at least gain evidence that SRS technologies can protect the 
real thing. 
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Prior work by DARPA and Dahlgren NSWC resulted in the HyperD combat system prototype, 
which is unclassified and believed to be unencumbered by proprietary restrictions.  Some con-
tractors of the SRS team worked on it in the Quorum program.  Although the details need to be 
worked out, it looks likely that the SRS team can borrow code from HyperD for inclusion in the 
self-regenerative service.  Ideally, the SRS team would work closely with the NSWC folks both to 
speed the team’s own understanding of the combat system design/code and to keep the team 
aware of military needs. 
Sections 6.3.1 through 6.3.5 have described some suggestions of how each SRS project may con-
tribute useful techniques and tools for the Aegis scenario.  In addition to self-regenerative 
functionality, we also have analyzed some of the techniques with respect to the severe Aegis tim-
ing constraints.  Although a demonstration Self-Regenerative Service may not fit within the 
millisecond timing constraints of real-time Aegis Sense-Control-Engage information pipeline for 
a just-in-time regeneration process, the service can be used to pre-generate variants and pre-load 
these variants into the HyperD system.  This was discussed briefly in Section 6.3.2 and is re-
peated below for the Self-Regenerative Service. 

The millisecond-range real-time requirements can be a significant challenge to the Self-
Regenerative Service and SRS tools, since the regeneration process needs to be done somehow 
within the severe time constraints.  The current setup of program variant replacement in many 
projects (including Diversity, Redundancy, Cognitive, and Insider) seem to require loading the 
new variant from a file system and re-initialization of the new variant.  As an optimization to by-
pass the loading phase latency, the new variants will need to be pre-loaded into main memory, 
and activated as needed (a warm standby).  As a further optimization, these new variants may be 
executed concurrently (a hot standby) and results voted, if full replicated and concurrent process-
ing is required.  This would be the case if the re-processing would cause the system to miss its 
original deadlines.  Concurrent processing may also be desirable simply to speed up the Sense-
Control-Engage pipeline, since an incoming target must be dealt with as soon as possible. 
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6.4. DDX Application Scenario 

 
Figure 13 DD(X) Communications Scenario 

 

 

Another scenario that we have started studying is Navy’s DD(X) Total Ship Computing Envi-
ronment.  A DD(X) ship contains 3 data centers and highly redundant networking connections.  
It is a highly survivable environment by design.  It would seem that SRS technologies would be 
able to help improve the performance and survivability of DD(X) computer systems.  The con-
crete scenario is still being developed at this writing (February 21, 2006). 
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Figure 14 DD(X) Total Ship Computing Environment 

 

The DD(X) Total Ship Computing Environment (TSCE), shown in Figure 14, contains many re-
dundant components.  The Self-Regenerative Service may be able to increase the degree of 
redundancy and availability in TSCE without increasing the complexity of the original software 
system. 
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APPENDIX A: 
 Part 1 of RSRS Architecture Study (Progress Report) 

 

 

Purpose of Report 
This report is the project deliverable summarizing the total effort expended by the Georgia Insti-
tute of Technology in support of Griffiss Air Force Base and DARPA on Grant FA8750-05-1-
0253, supported by the SRS program.   

The main goal of RSRS architecture is a conceptually simple, but functionally rich description of 
the four topic areas of SRS program as well as the interactions among them.  Specifically, we use 
the concepts of reflection and feedback control in the SRS components and between components.  
The feedback control is part of monitor-learning-actuator (MLA) loop.  By allowing recursive 
and mutual invocations of the SRS components and the presence of MLA loops at different 
component levels, we will be able to create a rich set of capabilities that demonstrate the power 
of an SRS application or system.  In the proposed study, we will develop the RSRS architecture 
in detail, describing the internal structure of each component and the mutual invocations among 
the components. 

Members of the Project: Prof. Calton Pu and Prof. Douglas Blough. 
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Reflective Self-Regenerative Systems (RSRS) Architecture Study 

Part 1: Architectural Analysis and Evaluation of SRS Projects 
 

Calton Pu {calton@cc.gatech.edu} and Douglas Blough {doug.blough@ece.gatech.edu} 
Georgia Institute of Technology 

 

A. Summary 
Architecture.  The RSRS Architecture is a conceptually simple, yet functionally rich description 
of the four topic areas of SRS program, as well as the interactions among them.  RSRS uses the 
concepts of reflection and feedback control between SRS components and within each compo-
nent to describe their internal structure and external interactions.  The main feature of RSRS is 
the monitor-learning-actuator (MLA) loop, based on the concepts of reflection and feedback con-
trol.  The MLA is present in each system layer and component that supports self-regeneration.  
By monitoring component and system behavior, systems and applications are able to detect at-
tacks and recover through the regeneration of data and programs using diversity to counter 
attacks targeting the physical representation of application (or system) programs.  The MLA ab-
straction also suggests a standard interface among the technology areas as well as supporting 
customized extensions for each project.  In addition to the main MLA abstraction, RSRS also in-
cludes component tools for specific areas such as Diversity and Redundancy.     

Interfaces.  The RSRS description of component interactions can be captured by a set of stan-
dard interfaces.  Such a standard interface defines the common functionality among the projects 
of each area.  Furthermore, extensions to these interfaces can be designed to support unique fea-
tures provided by individual projects.  The RSRS interface design is based on events, which 
carry both significant state information (the monitoring part of MLA) and control commands (the 
actuator part of MLA).  The state notification events have a high degree of composability be-
tween event types.  The control events enable various feedback control mechanisms to be 
adopted, including distributed and centralized control.  These interfaces will support a manage-
able integration of SRS projects and provide the SRS facilities to other applications and 
demonstration projects that need self-regenerative capabilities.  A high-level specification of the 
general RSRS interface is given in Part 2 of this study.  Development of detailed interfaces is 
premature at this stage, because most of the software products developed in Phase 1 are not de-
signed as components with well-defined external interfaces. 

Evaluation.  In this report (Part 1), the RSRS architecture has been successfully applied to 
model the self-regenerative aspects of current SRS projects.   These models can be used to com-
pare the projects of the same area at a qualitative level.  A quantitative evaluation of SRS 
projects is pending due to the in-progress status of the projects and their ongoing evaluation by 
the Red Teams.  In the next report (Part 2), we will look forward and attempt to use the lessons 
in this architectural study to fit the outcome of the SRS projects together. 
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B. RSRS Architecture  

B.1 RSRS Main Concepts 
The main concepts used in RSRS (see Figure 1) are: (1) feedback control and reflection in the 
MLA loop for self-regeneration, and (2) recursive and mutual use of component tools such as 
Diversity and Redundancy.  In Figure 1, we have liberally added recursive use of tools among 
the four key technology areas of SRS: (1) Biologically-Inspired Diversity, (2) Cognitive Immu-
nity and Regeneration, (3) Granular, Scalable Redundancy, and (4) Reasoning About Insider 
Threats.2  This level of interaction and integration may not be achieved at the end of Phase 1; 
however, an effective architecture for the SRS program must show the potential interfaces for in-
tegration among the tools and techniques being developed by these technology areas. 

 
Figure 15 RSRS Functional Architecture 

MLA Loop.  The foundation of RSRS is the monitor-learning-actuator (MLA) loop, based on 
the concepts of feedback control in engineering systems and reflection in programming lan-
guages.  The MLA loop consists of three components;  (1) a monitor that reflectively observes 
system behavior (e.g., in applications running inside a Cognitive Immunity and Regeneration en-
vironment) or watches for anomalies in other parts of the system (e.g., insider threat monitors), 
(2) an actuator that takes self-regenerative action to recover from observed anomalies, and (3) an 
optional learning component that records events observed by the monitor and actions taken by 
the actuator, and manages knowledge for better decision making in self-regeneration actions.    

                                                 
2 For brevity and where there is no ambiguity, we will refer to area (1) as “Diversity”, area (2) as “Cognitive”, area 
(3) as “Redundancy”, and area (4) as “Insider”. 
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Role of MLA.  The MLA loop can be found in all four technology areas of the SRS program.  
The MLA loop is represented in Figure 1 as yellow hexagons linked by connecting arrows.  The 
loop is most prominent in the Cognitive1 area, where four projects are building environments that 
support the monitoring, learning, and self-regeneration of application and system components to 
make them resilient against attacks.  The MLA loop is also a major structural component of the 
two projects in the Insider1 area, since such systems must observe the system behavior to detect 
and then counter insider attacks.  The loop is more implicit in the two “service” technology ar-
eas.  For example, the three projects in the Redundancy1 area provide redundant data delivery 
services to improve the availability and reliability of the entire system.  It is natural that these 
data services utilize MLA tools reflectively to improve their own availability and reliability.  
Similarly, the two projects in the Diversity1 area, which create program and data generation 
tools, can use MLA to avoid monoculture vulnerabilities in their own tools.    

The MLA loop primarily captures the self-regenerative aspect of SRS projects.  In the Diversity 
and Redundancy areas, the special capabilities provided by the projects are not necessarily self-
regenerative.  When discussing the inherent (non-self-regenerative) functionalities of compo-
nents in these areas, we refer to them as “tools”. 

Diversity Tools.  In the Diversity area, the projects will provide tools to create variants of binary 
representations of programs.  These variants should have sufficient differences among them so 
attacks that depend on specific bit-layout (e.g., typical buffer overflow attacks) would not work 
on all variants.  The variants are used by self-regenerative programs (e.g., in the Cognitive area), 
but the tools that generate the variants may be passive.  The degree of difference among the vari-
ants (and the associated resistance to attacks) is outside the scope of the MLA loop model.   

Redundancy Tools.  Similar to the Diversity Tools, the Redundancy area provides tools for data 
replication, object replication, and reliable communication, which have the capability to resist 
certain types of attacks through redundancy.  The performance and scalability of the specific re-
dundancy mechanisms, while important to the SRS program, is outside the scope of the MLA 
loop model. 

The rest of the report is organized as follows.  Sections 2.2 through 2.5 apply the MLA loop to 
analyze the self-regeneration aspects of the four SRS areas.  Section C contains an architectural 
evaluation of the current projects in each area.  Section D concludes the report with a self-
evaluation of the RSRS architecture. 
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B.2 RSRS Analysis of Cognitive Projects  
Cognitive MLA.  In the Cognitive Area, the self-regenerative healing process can be described 
using the MLA loop.  The three phases of self-regeneration (monitoring, learning, and regenera-
tion) are outlined in this section and illustrated in Figure 2. 

 

 

Figure 16 RSRS Architecture for the Cognitive Area 

 
Monitoring.  The first part of the Cognitive MLA is a monitoring service, which will monitor 
events at several time granularities and at different levels of system services.  This approach 
comes from the observation that system failures and malicious attacks may occur through events 
at all time scales and system levels.  Consequently, it is necessary for an SRS system to monitor 
the vital signs and anomalous events at several appropriate time scales and levels of abstraction.  
At each level of time scale and abstraction (e.g., hardware, kernel, middleware, and application 
process), the monitoring service will observe meaningful system states, compare them to accept-
able states (using potentially different models and techniques), and generate events if significant 
state changes are detected.   

Learning-Based Diagnosis.  The second part of the Cognitive MLA is a learning-based diagno-
sis service, which may vary according to the time scale of events and their level of abstraction.  
For example, diagnosis at the hardware and kernel levels may be based on control systems.  In 

 

Biologically-Inspired 
Diversity Tools (BID) 

 

Cognitive Immunity and Regeneration Environment 
(Learn/Repair, Model-Based, AWDRAT, Cortex) 

Applications Applications 

 
Granular, Scalable, 

Redundant Data 
Services (GSR) 

  

Monitor Learning Actuator 

Attacks Attacks 



 

 43

contrast, diagnosis at the middleware and application levels may rely on model-based reasoning 
or data mining techniques.  We use an abstract learning process to model the various learning-
based diagnosis services.  Abstractly, the events observed by the monitoring service are stored in 
an Events Database (ED), and the diagnosis process is a comparison of patterns in the ED with 
patterns previous learned and stored in a Known Events Database (KED).  The KED stores both 
significant event patterns (problems) and an appropriate response and defense for those prob-
lems.  In model-based systems, the KED captures the knowledge represented by the models.  The 
learning part of MLA is represented by addition of knowledge into KED.   

Regenerative Actuation.  The third part of the Cognitive MLA is a regenerative actuator, which 
finds and carries out the recovery actions specified by the KED.  For example, software updates 
may be available for a known virus using buffer overflow.  In this case, KED will contain the 
recipe to apply the software update, or send an updated copy of system software to the affected 
node.  If the problem is unknown (e.g., a new DoS or virus attack), then the Cognitive MLA en-
ters a sub-loop to build and find an effective regenerative action using two high level services: a 
program diversity service provided by the Diversity Area and a data redundancy service pro-
vided by the Redundancy Area.  The sub-loop will identify the extent of damage, create new 
system images to repair the damaged components, test them against the attack, find the variants 
that are effective against the attacks, store them in the KED, and distribute these variants in re-
generative actions. 

The sub-loop to search for remedies builds on the other SRS areas.  For example, the new system 
image variants are created by program diversity tools from the Diversity Area.  These variants 
may have been preventively generated beforehand, or dynamically generated at run-time.  Simi-
larly, trusted data and communications are provided by data redundancy services from the 
Redundancy Area.  Each variant is then tested by creating an environment with the new variant 
and exposing it to the environmental conditions during the attack.  If a new variant is shown to 
be resistant to the attack, it is entered into the KED and used to recover from the attack.  The en-
tire sub-loop may be online or offline, depending on the knowledge contained in the KED and 
the policies for recovery. 

Cognitive Projects.  Sophisticated software tools are being developed by the Cognitive area pro-
jects (Learn/Repair, Model-Based, AWDRAT, Cortex) that can be described by MLA loops.  
All of these projects have significant R&D efforts in monitoring, learning, and repairing of ap-
plications that run in their own environments.  Although these efforts are currently isolated in 
their own projects, their components may be made available and interoperable through a standard 
interface based on the MLA abstraction.  These tools can then be adopted by and integrated with 
other technology areas.  Three of the four Cognitive area projects (Model-Based, AWDRAT, Cor-
tex) employ model-based approaches where self regeneration is triggered by detection of 
deviations from a predictive model of the system.  We note that the model-based approach is a 
specialization of the MLA approach, where in the monitoring component, system behavior is 
compared against model outputs, in the learning component, the system model is dynamically 
updated based on actual system outputs, and in the actuator component, adaptation of the system 
is performed based on model deviations. 
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B.3 RSRS Analysis of Diversity Projects 
The Diversity area (Genesis and Dawson projects) develops code and data diversification tools 
that will be used by other areas and applications when attacks are detected.  In Figure 1, the Di-
versity tools are represented as purple ovals, typically used by the actuator component of an 
MLA loop.   

Figure 3 shows the RSRS architecture view of Diversity projects. 

The main goal of Diversity projects is to develop Diversity Component Tools (algorithms and 
software) to achieve design diversity and data diversity goals.  To measure the effectiveness of 
diversity algorithms, the evaluation steps can be modeled by an MLA-style loop.   

• Monitoring: After the variants are created, their resistance to attacks is evaluated.   

• Learning-Based Diagnosis: The winning variants are stored in a KED, while the losing 
variants are marked as such or discarded.   

• Regenerative Actuation: The winning variants are then used to increase system robust-
ness by replacing vulnerable components, possibly by a Cognitive component or system. 

 

Figure 17 RSR Architecture of Diversity Area 
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B.4 RSRS Analysis of Redundancy Projects 
The Redundancy area projects develop highly-available services for communication, data stor-
age, and computation for use by other areas and applications.  For example, applications that run 
in a Cognitive Regeneration environment may have their communications and/or data flowing 
through channels created by the SAIIA, IITSR, or QuickSilver projects.  

Figure 4 shows the RSRS architecture view of Redundancy projects. 

 
 
 

 
 

Figure 18 RSR Architecture of Redundancy Area 
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B.5 RSRS Analysis of Insider Projects 
The Insider technology area (PMOP and MIT-HDSM projects) consists of meta-level software 
tools that monitor system-level events and compare these events to a correct behavioral model or 
acceptable norm.  Their MLA loops contain significant monitoring components (many system 
and application events may be relevant), learning components (dynamic adaptation may be re-
quired when under insider threats, e.g., temporary adoption of more conservative security rules), 
and actuator components (e.g., generating and switching to a different set of program modules 
that implement a more restrictive set of rules to counteract the suspected threat).  The Insider 
area projects are represented as peach-colored ovals in Figure 1.   

Figure 5 shows the RSRS architecture view of Insider projects. 
 
 

 

Figure 19 RSRS Architecture for the Insider Area 
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C. Architectural Evaluation of SRS Projects 
In this section, we apply the RSRS architecture to the projects in each area, by translating each 
project’s architecture into the general RSRS structure shown from Figure 1 through Figure 5.   

• The Cognitive projects in Section C.1 correspond to the projects represented by Figure 2 
RSRS Architecture for the Cognitive Area.   

• The Diversity projects in Section C.2 correspond to the projects represented by Figure 3 
RSRS Architecture of Diversity Area.   

• The Redundancy projects in Section C.3 correspond to the projects represented by Figure 
4 RSRS Architecture of Redundancy Area.   

• The Insider projects in Section C.4 correspond to the projects represented by Figure 5 
RSRS Architecture for the Insider Area.   
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C.1 RSRS Architectural Evaluation of Cognitive Projects  

C.1.1 Learning and Repair Techniques for Self-Healing Systems  
Learn/Repair (MIT: Michael Ernst and Martin Rinard) 

Daikon is a software tool that verifies and preserves invariants of program data structures.  Pro-
grammers specify the invariants that data structures should maintain during execution.  Daikon 
creates the code that monitors the invariants during execution and repair algorithms that attempt 
to restore the invariants. 

Figure 20Figure 20 shows the RSRS architecture evaluation of the Learn-and-Repair project, by 
describing the Daikon facilities using MLA concepts.  Examples of Daikon techniques modeled 
using MLA concepts include: 

• Monitoring: In an ahead-of-time step, the target program is executed under a special run-
time system that observes the values of program variables. 

• Learning-Based Diagnosis: Machine learning is performed over the observed variable 
values, producing a model (a set of data structure constraints).  The data structure repair 
compiler automatically compiles a repair strategy for these properties into the target pro-
gram. 

• Regenerative Actuation: If any constraint is violated at run-time, the repair algorithm per-
forms goal-directed planning to create a repair plan, consisting of a sequence of 
individual data repair actions.  Each data repair action modifies a data structure to re-
establish the constraints. 

Concrete deliverables from the Learn/Repair project are: 

• the Daikon tool for dynamic invariant (model) inference 

• a data structure repair compiler 

• a data structure repair language (supported by the tools) 

Summary of Learn/Repair Evaluation.  The Learn/Repair project has a clear self-regenerative 
nature in its MLA feature, as shown in Figure 20.  The scope of the Daikon tool is within a pro-
gram, concerning the regeneration of decayed data structures.  This technique can be applied by 
application programs to become more robust against internal data structure corruption.  This is 
the only project working on self-regenerative techniques applied inside a program. 
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Figure 20 Main MLA Features of Learn-and-Repair 

Learn & Repair 

 
 
 

 

Data structure 
invariant defin. Invariant 

monitoring

Repair data 
structures to 
restore inv. 

Normalization 

Invariant 
violation



 

 50

 

C.1.2 Pervasive Self-Regeneration through Concurrent Model-Based Execution  
Model-Based Execution (MIT: Brian Williams and Gregory Sullivan)   

Summary: Model-based execution can be modeled as an MLA loop, as follows. 

• Monitoring: Pervasive system robustness by composing concurrent fault aware processes. 
Self-deprecating methods through prognostic mode estimation. 

• Learning-Based Diagnosis: Fault-adaptive processes through model-based program exe-
cution.  (The model-based executive can construct novel recovery actions in the face of 
novel faults.) Safe fault adaptation through method dispatch as continuous planning. In-
corporation of fault adaptation incrementally. 

• Regenerative Actuation: Self-regenerating methods through redundant method dispatch. 
Self-optimizing methods through decision-theoretic dispatch. 

Figure 21 illustrates the architecture of the project, taken from the presentation in the January 
2005 SRS PI meeting.  It shows a MLA-style feedback loop in their architecture, highlighted 
with the light green oval. 

Figure 22 shows the RSRS analysis of the main MLA functions of their project.  The experimen-
tal part of the project (the robotics application) will demonstrate the learning and regenerative 
capabilities of the approach in the application domain.  .  Concrete deliverables from the project 
are the RMPL language and the MIT_MERS rover testbed.   

Summary of Model-Based Execution Evaluation.  The Model-Based Execution contains a 
monitor that detects faults during execution by comparing the execution results against the pre-
dictions of a model.  Their Learning-Based Diagnosis module can define novel recovery actions 
for novel faults.  The system method dispatch module can cause methods to be self-regenerated 
through redundancy and/or self-optimized through decision-theoretic approaches.  This method 
may be applied to any application for which appropriate models can be created. 
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Figure 21 Structure of Model-Based Executive Architecture 

 

Figure 22 Main MLA Functions of Model-Based Executive 
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C.1.3 Architectural Differencing, Wrappers, Diagnosis, Recovery, Adaptivity, and 
Trust Modeling  

AWDRAT (MIT: Howie Shrobe; Teknowledge: Bob Balzer) 

Figure 23 illustrates the structure of the AWDRAT toolkit, taken from one of the slides of the 
AWDRAT presentation at 07/12/05 PI Meeting.  The AWDRAT approach generates wrappers 
that monitor application software execution.  The wrappers and other sensors observe the impor-
tant execution parameters, comparing them to a canonical system model through a process called 
Architectural Differencing.  If sufficient deviation is found between the specified constraints of 
the architectural model and execution parameters, then an attack is recognized and recovery ac-
tions initiated.  The recovery actions include restoration of databases, code segments, and other 
recoverable data.  Appropriate methods (possibly created by other projects such as Genesis and 
Dawson) are combined with consistent data in a new execution. 

Experiments.  The AWDRAT toolkit will be demonstrated and evaluated in OASIS DEMVAL 
system, specifically the MAF/CAF component.   

From the RSRS architecture point of view, the AWDRAT decision cycle shown in Figure 23 can 
be modeled as an MLA loop as follows: 

• Monitoring: Architectural Differencing - Accompanying each method is an architectural 
model of the computation performed by the method.  AWDRAT interprets this in parallel 
with the executing code, using wrappers to extract data from the method’s execution and 
noting when the executing code violates a constraint of the architectural model.   

• Learning-Based Diagnosis: If any constraint imposed by the architectural model is vio-
lated, model-based diagnosis is invoked to assess what part of the computation may have 
failed and the trust model is updated with the information produced by the diagnosis, 
leading to new assessments of the trustability of the computational resources. 

• Regenerative Actuation: Recoverable data (e.g. databases, code segments, password files) 
are restored in order to establish a consistent point from which to resume the computa-
tion.  AWDRAT consults its method library, finding all applicable methods relevant to 
the service request. Each combination of method and supporting resources is evaluated, 
taking into account the cost of the resources and the value of the service quality deliv-
ered. 

Figure 24 shows the RSRS architecture evaluation of AWDRAT, by transforming the structure 
shown in Figure 23 into the RSRS architecture concepts as explained above.  We can see the 
main input sources (data produced by the sensors and the wrapper monitor on the execution side 
and the system models on the specification side) of the Architectural Differencer.  The Architec-
tural Differencer determines whether an attack situation should be evaluated by the Trust model 
diagnosis module, which is capable of learning from new cases and feeding the augmented 
model into subsequent evaluations.   
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Figure 23 Structure of AWDRAT Toolkit 

 

Figure 24 Main MLA Features of AWDRAT  
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There are several levels of MLA loops in the AWDRAT project.  At the module level, the learn-
ing MLA is represented by an arrow looping back to the Trust Model and Diagnosis module.  At 
the system level, the normal execution flows through the system without further actions.  If at-
tacks are detected by Architectural Differencer and confirmed by the Trust Model, the recovery 
and regeneration actions are initiated.  Adaptive Software modules restore data consistency and 
choose appropriate wrappers and methods for the new execution, represented by the black arrows 
outside the inner MLA loop.  This “outer” MLA loop is currently part of the AWDRAT project, 
although in principle it could be done by software tools created by another of the Cognitive pro-
jects (Section C.1) that work at the system level. 

Summary of AWDRAT Evaluation.  The AWDRAT system builds an architectural model of 
each method executed.  During the method execution, the model is evaluated concurrently and a 
monitor called Architectural Differencer compares the model against the method execution re-
sults.  If the Differencer finds discrepancies, the learning-based diagnosis module updates the 
trust model for future reference.  If damage is detected after differences are found, the regenera-
tive action restores necessary data to a consistent state.  Their tools can be applied to any 
application for which appropriate models can be defined for each potentially vulnerable method. 
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C.1.4 Cortex 
Cortex (Honeywell: David Musliner) 

Figure 25 illustrates the structure of Cortex Demo Architecture, taken from one of the slides of 
the Cortex presentation at 07/12/05 PI Meeting.  The Cortex project is building a MySQL proxy 
that can filter incoming SQL database queries by comparing them with known exploits from 
snort's rules and, new rules from Cortex's learning module.  One of the learning techniques em-
ployed by Cortex is the use of “Taster Databases” that run the unknown queries as a test.  If the 
queries turn out to be malicious, then they have compromised only a Taster Database.  A Repli-
cator module maintains the consistency between multiple Taster Databases and the Master 
Database.  

Experiments.  Cortex is using MySQL as the demonstration application.  They have built a pro-
totype and evaluated the system response to known attacks (buffer overflow and illegal 
parameter).  The Cortex system is able to defend itself against these attacks. 

From the RSRS architecture point of view, the Cortex architecture can be modeled as an MLA 
loop as follows: 

• Monitoring: Scalable Coherent State Estimation - Cortex will use highly scalable qualita-
tive probabilistic algorithms to combine the noisy, uncertain outputs from numerous 
system sensors into an accurate and coherent estimate of system state. 

• Learning-Based Diagnosis: On-line Learning - Cortex will begin operations with models 
of the computing system it controls, its mission, and the faults and attacks that may dis-
turb it. Over time, Cortex will use statistical and structural learning algorithms to 
continually refine those models, improving the accuracy of its self-awareness and mis-
sion-awareness.  

• Regenerative Actuation: Mission-Optimized Planning and Response - Cortex will use 
cognitively-inspired mission-aware planning algorithms to derive proactive response 
plans that optimize the system's mission performance during disruptions and attacks. 

Figure 26 shows the RSRS architecture evaluation of Cortex, by translating the structure shown 
in Figure 25 into the RSRS architecture concepts as explained above.   

Summary of Architectural Evaluation.  The Cortex project uses “Taster Databases” to find 
and filter out dangerous queries.  If bad queries cause damage to a Taster Database, that query is 
not forwarded to the Master Database for actual processing.  The Cortex system learns to distin-
guish bad queries from normal queries, and reconfigures the system to switch off damaged 
databases as well as regenerating new replacements.  The Cortex system can be used by a self-
healing monitor to protect Master Databases by managing the Taster Databases on behalf of the 
entire system. 
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Figure 25 Structure of Cortex Demo Architecture 
 

 

Figure 26 Main MLA Features of Cortex 
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C.1.5 RSRS Architectural Comparison of Cognitive Projects 
 

 

 
 

Figure 27 RSRS Comparison of Cognitive Projects 
 

At the program level, the Learn/Repair project is structurally different from the other three pro-
jects.  The AWDRAT and Model-Based Executive projects are similar in structure and in their 
model-based approach.  They differ in the application area chosen for the demonstration of the 
technology.  The Cortex project is structurally similar to AWDRAT and Model-Based Execu-
tion, but focuses on the SQL query as the application area.



 

 58

 

C.2 RSRS Architectural Evaluation of Diversity Projects 

C.2.1 Genesis 
Genesis (University of Virginia: John C. Knight, J.W. Davidson, D. Evans, A. Nguyen-Tuong; 
CMU: C. Wang) 

Figure 28 illustrates the structure of the Genesis toolkit, taken from one of the slides of the Gene-
sis presentation at 07/12/05 PI Meeting.  Genesis is an integrated approach to inserting diversity 
into the physical representation of a program covering several abstraction layers when the pro-
gram is being transformed.  At the highest level, source code can be compiled into different 
object codes.  At the next level, object codes can be translated into different executables at the 
link time.  Then, executables can be loaded into different actual memory locations.  Finally, dy-
namic diversity can be introduced at run-time, after the executable has been loaded.   

Examples of specific techniques for creating effective diverse representations: 

• Calling Sequence Diversity (CSD): protection against buffer-overflow and stack smash-
ing attacks, by creating random memory layouts of branching addresses.  CSD can be 
done at link or load time. 

• Instruction Set Randomization (ISR): protection against machine code injection, by ran-
domizing the machine instructions of the program being executed.  ISR can be seen as a 
dynamic diversity method, since the randomized instruction set is interpreted and trans-
lated at run-time, although the randomization is typically done at code generation 
(compile) time. 

Experiments:  The Genesis project created diverse representations of the Apache web server.  
The representations are tested against known attacks and demonstrated their effectiveness.  Ex-
periments were conducted on the Strata VM and Red Hat Linux.  The experiments show a very 
high percentage of success of a small number of diversification methods (e.g., CSD and ISR) 
when in “good” combination.  In other words, the current generation of attack methods appears 
to be brittle when faced with simple diversification defense methods. 

Figure 29 shows the RSRS architecture evaluation of Genesis, by transforming the structure 
shown in Figure 28 into the RSRS architecture concepts.  We can see that the Genesis toolkit 
creates diverse variants and tests them against attacks.  A matrix summarizing the test results 
shows which variants are immune when attacked by specific methods.  Variants shown by the 
experiments as effective against known attacks (e.g., the combination CSD/ISR) can be used di-
rectly (as static and preventive defense), or loaded in when attacks happen (as dynamic defense). 

Summary of Genesis Evaluation.  The Genesis project generates program variants using tech-
niques such as Calling Sequence Diversity and Instruction Set Randomization.  The program 
variants can be tested and shown to be resistant to specific attacks.  Some of the variants may 
also be immune to new attacks, for example, due to Instruction Set Randomization, which is dif-
ficult to guess.  Their tool may be used by a system-level self-regenerative monitor to replace 
vulnerable programs or components either before or after an attack has happened. 
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Figure 28 Structure of Genesis Toolkit 

 

Figure 29 Main MLA Features of Genesis 
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C.2.2 DAWSON – Synthetic Diversity for Intrusion Tolerance 
DAWSON (Global Infotek: James Just) 

Figure 30 illustrates the structure of Dawson toolkit, taken from one of the slides of the Dawson 
presentation at 07/12/05 PI Meeting.  Dawson is a project similar in overall structure to Genesis, 
but more focused on the platform (Microsoft Windows binaries) and diversification techniques, 
primarily memory address randomization at linking and loading times.  The project addresses 
memory-related vulnerabilities at two levels: exploit level (where the vulnerability is supposed to 
be) and the payload level (where the attack code is). 

Examples of specific techniques for creating effective diverse representations: 

• Transformation of absolute addresses, including DLL names, address allocation order, 
etc. 

• Randomization of relative addresses. 

• Unique randomizations at the load/start time of each execution by using pseudo random 
number generators. 

Figure 31 shows the RSRS architecture evaluation of Dawson, by transforming the structure 
shown in Figure 30 into the RSRS architecture concepts.  Similar to Genesis, we can see that the 
Dawson toolkit creates diverse variants using primarily memory address and name transforma-
tion techniques.   

Summary of Self-Regenerative Functionality in DAWSON: 

• Tripwires generating alerts of probable attacks from randomized applications 

• Randomization transforms/key generation 

• Automated re-randomization of applications at start-up 

• Recovery, Restart, Re-randomization 

Self-regenerative functionality includes the ability to alert other mechanisms of probable attacks.  
When applications are randomized, e.g. stack-based structures moved to other places, tripwires 
are placed in the conventional locations for such structures.  For example, if the stack is padded 
with additional pages, the pages originally used by the un-randomized application are marked 
unreadable.  Any attempted access to the original locations will generate alerts from tripwires in-
serted as part of randomization. 

Randomly generated keys govern what transformations to apply when a system starts up.   This 
can have some self-regenerative effect, in that programs that were vulnerable/incapacitated in a 
prior state can become invulnerable/capable in a later state.  This self-regenerative effect is dif-
ferent from mere elimination of vulnerabilities or hardening of a program that also results from 
randomization.  These hardening effects do not become self regenerative until the overall system 
takes advantage of the fact that a population of hardened programs or hosts survived an attack (or 
failure) and make use of this fact to regenerate those parts of the larger system that succumbed to 
attack. 
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Figure 30 Structure of Dawson Toolkit 

 

Figure 31 Main MLA Features of Dawson 
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When programs fail, they can be killed and/or restarted as necessary as a countermeasure.  Pro-
grams may fail either because of attack or some instability introduced by our randomizing 
transforms.  The additional levels of error handling introduced by the Dawson transformations 
can make applications more robust in the face of errors.  When errors are detected, applications 
can be killed and restarted as part of this error handling.  With such mechanisms there is the po-
tential to turn over decision making on whether and when to restart to external components 
(mechanisms in the broader architecture.)  Hooks have not yet been implemented to enable this. 

The following tools are provided by DAWSON: 

• Application hooking + native service randomize user level runtime structures 

• Kernel mode driver for low level randomization management 

• Routines for dynamic randomization of specific runtime structures 

The project’s functionality is concerned with specific interfaces and control mechanisms within 
its specific software infrastructure.  The DAWSON software infrastructure is exclusively Win-
dows based, Windows being the most pervasive and insufficiently diverse mono-culture the 
problems of which DAWSON is designed to mitigate. 

Randomization at the user level is achieved by a user mode hooking approach.  In this approach 
branch tables, or in some cases addresses within the code are patched dynamically to gain control 
at critical points.  At this time injected code can run and perform specific randomization func-
tions before returning control at appropriate points.  Much of this injected code makes use of 
native API’s exposed (but not documented) on the NTDLL interface.  In the future, the random-
izing transforms may be controlled by an external properties file, entries in the registry, or some 
distributable service that delivers these parameters the host in a coordinated manner. 

The following specific randomizations are provided by DAWSON: 

• Stack randomization – where the run-time stack is positioned 

• Heap randomization – positions of blocks in the run-time heap 

• DLL randomization – where DLLs get positioned in process memory 

• IAT table randomization – shuffles entries in the Import Address Table 

The project is currently working on a replacement implementation of the Windows CreateProc-
ess call that gives finer grained control over process creation at the kernel level.  This gives more 
control that can be achieved with hooks to individual calls.  For example, arbitrary process crea-
tions can be detected and the loading of primitive structures into memory at boot time can be 
controlled.  The plan is for CreateProcess to work in conjunction with a small kernel driver that 
does things that can only be done in kernel mode and leave most of the randomization in user 
mode.  A kernel mode driver can detect process creation earlier and apply randomizations there. 

The project has worked with static transformations that randomize individual PE files (EXEs and 
DLLs) generating a new PE file before the PE file is loaded into memory.  These transformations 
take a PE file and generate a new PE file as a result.  This mechanism will be supported with an 
interface consistent with the dynamic transformation interface; the difference being that the 
transformation will be applied to the file before the file is loaded into memory.  The approach 
has an advantage that some parameters interpreted by the loader may be manipulated before the 
loader interprets them, rather that after as in the case of our dynamic transformations.  The pri-
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mary disadvantage is that maintaining the integrity of the PE file can be complex for some desir-
able transforms.  Success with dynamic transformation of run-time structures in memory has 
caused the project to de-emphasize these static transformations of PE files. 

Another potential interface is the set of routines that implement the transforms themselves.  A 
small library of routines to perform specific transformations has been accumulated.  Right now 
these routines are embedded in the code of a hooking application.  However, these routines could 
be pluggable, conforming to a standard API. This could provide a potential integration point with 
self-regeneration control software. 

Summary of DAWSON Evaluation.  The DAWSON project generates program variants for the 
Windows environment using techniques such as variable location (stack/heap) randomization 
and address (DLL/IAT) randomization.  The program variants can be tested and shown to be re-
sistant to specific attacks.  Their tool may be used by a system-level self-regenerative monitor to 
replace vulnerable programs or components either before or after an attack has happened. 

 

C.2.3 RSRS Architectural Comparison of Diversity Projects 
 

 

Figure 32 RSRS Comparison of Diversity Projects 
 

The two Diversity projects are structurally similar, but have different deliverables (different op-
erating systems and system environment assumptions).
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C.3 RSRS Architectural Evaluation of Redundancy Projects 

C.3.1 Scalability, Accountability and Instant Information Access for Network-
Centric Warfare  

SAIIA  (Johns Hopkins University:  Yair Amir; Purdue University:  Cristina Nita-Rotaru) 

The SAIIA project is studying scalable and efficient Byzantine fault tolerance for systems that 
span a wide-area network environment.  As part of the project, the Steward architecture, depicted 
in Figure 33, was developed.  This figure was taken from one of the slides of the SAIIA presen-
tation at 07/12/05 PI Meeting.  Steward makes use of expensive Byzantine fault-tolerant object 
replication protocols only within local sites while employing more efficient non-Byzantine fault-
tolerant protocols across sites.  The SAIIA project is also exploring update accountability in 
which the effects of bad updates can be traced in a post-mortem analysis once the bad update is 
detected. 

SAIIA Project Summary: The project is studying 3 innovative ideas: 

• Scalable wide-area intrusion tolerance: expensive Byzantine fault-tolerant replication and 
threshold cryptography used within a site, more efficient non-Byzantine fault-tolerant 
replication across wide area 

• Update accountability: dependency tracking used to mark corrupt and possibly corrupt 
data after a bad update is detected – this requires some intrusion detection mechanism, 
which is not discussed 

• Instant information access: fast update propagation using commutative update semantics 
that avoids the need to globally order updates 

The current focus of the project is scalable wide-area intrusion tolerance, for which the Steward 
architecture was developed. 

RSRS Architectural Analysis: Within the Steward wide-area intrusion-tolerant architecture, 
there is monitoring and regenerative actuation: 

• Monitoring: The standby servers have monitors (see Figure 33) that are responsible for 
verifying that the representative server executes the wide-area protocol correctly. 

• Regenerative Actuation: Detection of incorrect operation of the representative server re-
sults in removal of the current representative and election of a new representative. 

Update accountability can also be modeled as an MLA loop:   

• Monitoring: Intrusion detection mechanisms monitor and detect bad updates.   

• Learning-Based Diagnosis: Optional.   

• Regenerative Actuation: Update accountability mechanisms trace corrupted data based on 
bad update identification, thereby enabling recovery mechanisms to be invoked. 

Several technologies being developed in the SAIIA project could be used as stand-alone tools to 
provide support for self-regenerative systems and/or applications.  These include protocols for 
wide-area object replication and threshold cryptography. 
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Summary of SAIIA Evaluation.  The Steward wide-area object replication work is the most 
relevant to the SRS program.  It provides a useful technology to support intrusion-tolerant sys-
tems that are deployed across wide-area network environments.  Currently, the project has been 
primarily focused on achieving performance goals, as called for by the SRS program, rather than 
investigating self regeneration within a replicated environment.   There is a significant future op-
portunity to enhance object replication mechanisms with internal self regeneration so that they 
can not only support larger self-regenerative systems but can also provide inherently self-
regenerative replicated objects.   

 

Figure 33 Structure of Steward Architecture (J.Hopkins) 

C.3.2 Increasing Intrusion Tolerance via Scalable Redundancy  
IITSR  (CMU:  Michael K. Reiter, Greg Ganger, Priya Narasimhan, Anastassia Ailamaki, 
Chuck Cranor) 

The technologies explored in the IITSR project provide intrusion-tolerant data storage that can 
be used in support of self-regenerative systems.  For example, IITSR technologies could be used 
to securely store the knowledge base maintained by cognitive area projects.  Figure 34 illustrates 
the structure of the update operation in a Byzantine-fault-tolerant query/update system, taken 
from one of the slides of the IITSR presentation at 07/12/05 PI Meeting.  The Byzantine-fault-
tolerant query/update system is one of the technologies being investigated in IITSR. 

IITSR Project Summary: The project considers both low-cost data replication and higher-cost 
object replication, as well as specialized protocols for important object types that judiciously mix 
data/object replication to achieve good performance.  Additional performance improvements are 
expected through the use of techniques such as shifting load from servers to clients, not requiring 
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that invocations be processed on all servers, using versioning to avoid proactive update ordering, 
etc. 

RSRS Architectural Analysis: IITSR replication management protocols contain simple rules 
that may be modeled as MLA loop.  The server proceeds with version-based updates, and clients 
are responsible for detecting and resolving update conflicts.   

• Monitoring: The replication mechanisms have various “bad update” detection capabili-
ties, e.g. failure to reach agreement when “agreed write” is employed and failure to verify 
data in verifiable read protocol.   

• Learning-Based Diagnosis: The data replication mechanisms in IITSR are compatible 
with several existing replication-based diagnosis algorithms.3  These algorithms could be 
used with IITSR to diagnose faulty and compromised data servers. 

• Regenerative Actuation: Bad updates that are detected at the time of a subsequent read 
could be recovered from either by regenerating correct data (possible in some cases) or 
reverting to a previous version (when regeneration is not possible).  

A number of technologies being developed in the IITSR project could be used as stand-alone 
tools to provide support for self-regenerative systems and/or applications.  These include server-
side versioning, Byzantine protocols for read/write data, linearizable data access mechanisms, 
and Byzantine protocols for query/update objects. 

Summary of IITSR Evaluation.  Currently, the IITSR project focuses primarily on providing 
supporting technologies for SRS.  An unexplored but extremely promising extension would be to 
provide a self-contained self-regenerative data store, i.e. to incorporate aspects of self regenera-
tion inside the data store itself.  Such a self-regenerative data store is indicated in Figure 4, where 
the MLA loop characterizing self regeneration is present inside the data/object store.  Techniques 
for diagnosis, recovery, reconfiguration, and adaptation of Byzantine-fault-tolerant data access 
technologies have been studied in several projects.3,4  These techniques are well suited for inte-
gration with the types of technologies developed within IITSR.  Successful integration would 
result in the self-contained self-regenerative data store envisioned in Figure 4.  Self-contained 
self-regenerative components such as these could form building blocks from which larger self-
regenerative systems could be constructed.  Development of important self-regenerative compo-
nents such as a general-purpose data store would therefore constitute an extremely valuable 
contribution of the SRS program. 

 

                                                 
3 Alvisi, Malkhi, Pierce, and Reiter, “Fault Detection in Byzantine Quorum Systems,” IEEE Transactions on Paral-
lel and Distributed Systems, Sept. 2001. 

Kong, Subbiah, Ahamad, and Blough, “A Reconfigurable Byzantine Quorum Approach for the Agile Store,” Pro-
ceedings of the 2003 Symposium on Reliable Distributed Systems. 
4 Kong, Manohar, Subbiah, Ahamad, and Blough, “Agile Store: Experience with Quorum-Based Replication Tech-
niques for Adaptive Byzantine Fault Tolerance,” Proceedings of the 2005 Symposium on Reliable Distributed 
Systems, to appear. 
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Figure 34 Example Structure of CMU Project 
 

C.3.3 QuickSilver 
QuickSilver (Cornell:  Ken Birman, Paul Francis, Johannes Gehrke, Robbert van Renesse; Ray-
theon:  Jay Lala, Tom Bracewell) 

The Quicksilver project is developing several scalable reliable communications technologies for 
use within self-regenerative systems.  For example, Quicksilver and its Cayuga event processing 
system can be used to disseminate and process important events, such as failures and intrusions 
that are detected at various levels by different monitors and sensors in the system. Figure 35 il-
lustrates the structure of the Cayuga system, taken from one of the slides of the QuickSilver 
presentation at the 07/12/05 PI Meeting.   

Quicksilver Project Summary:  Quicksilver is developing three primary technologies: the Ca-
yuga event processing system, the SlingShot scalable reliable multicast service, and the 
Quicksilver scalable publish-subscribe infrastructure.  The Cayuga system offers scalable XML 
event filtering.  SlingShot uses newly developed techniques for scalable reliable multicast to 
provide scalable clustered services via a Web Service paradigm.  The packet recovery mecha-
nism for SlingShot is depicted in Figure 36, which is taken from one of the slides of the 
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QuickSilver presentation at the 07/12/05 PI Meeting.  Quicksilver pub/sub provides a scalable 
reliable infrastructure for publish/subscribe applications. 

RSRS Architectural Analysis: As with the other GSR projects, Quicksilver primarily provides 
technologies to support self-regenerative systems.  Most of the developed technologies provide 
inherent robustness to some level of intrusion but are not explicitly self-regenerative.  For exam-
ple, the SlingShot scalable reliable multicast technology uses gossip-based protocols that are 
robust to a limited number of misbehaving participants, however it does not attempt to identify 
and remove misbehaving participants in order to fully heal the system.  

Summary of QuickSilver Evaluation.  The Quicksilver technologies fit well within the RSRS 
architecture, as is depicted in Figure 4.  Important events, such as failures and intrusions that are 
detected at various levels by different monitors and sensors in the system, must be disseminated 
and processed using a system such as Cayuga.  Applications communicate internally and exter-
nally using GSR communications mechanisms such as reliable multicast (SlingShot) and 
publish/subscribe (Quicksilver pub/sub).  In order to support the RSRS architecture, all of the 
communication and event processing must be done in a scalable and reliable manner, using tech-
nologies such as those developed in the Quicksilver project.  It should also be emphasized that 
QuickSilver is the only GSR project focusing on scalable reliable communications services.  The 
other two GSR projects (SAIIA and IITSR) are focused on data and/or object replication mecha-
nisms, rather than communication. 

 

 

Figure 35 Event-System Architecture in Cayuga 
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Figure 36 Packet Recovery Mechanism in SlingShot 

 

C.3.4 RSRS Architectural Comparison of Redundancy Projects 
The three GSR projects are quite different in focus.  SAIIA deals primarily with general object 
replication over wide-area networks.  IITSR focuses on data replication with some consideration 
of flat objects.  QuickSilver considers scalable and reliable communication.  None of the GSR 
projects has considered internal self-regenerative aspects in detail; instead, they have focused on 
obtaining the best performance while providing functionalities of use to a larger self-regenerative 
system.  Due to the redundant structures they employ, all of the projects have some capability to 
tolerate intrusions and attacks so long as they do not affect too many modules. 
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C.4 RSRS Architectural Evaluation of Insider Projects 

C.4.1 Detecting and Preventing Misuse of Privilege  
PMOP  (Teknowledge: Bob Balzer; MIT: Howie Shrobe) 

Figure 37 illustrates the structure of PMOP architecture, taken from one of the slides of the 
PMOP presentation at 07/12/05 PI Meeting.   

Summary: the PMOP Architecture can be modeled as the ML part of the MLA loop.  The action 
part is implicit in the architecture, with potentially explicit regeneration action needed.  

• Monitoring: Operator Behavior Monitor - a component that mediates the communication 
between a legacy system’s GUI and the system itself to extract the application level 
commands or directives initiated by the user/operator through that GUI so that they can 
be screened for harmful effects before being processed by the legacy system.  

• Learning-Based Diagnosis:  

o Matching Operator Behavior against Role-Based Plans - a component that com-
pares operator behavior traces to behavior traces from operator and attack plans. 

o Operational System Model - an operational system model for a legacy application 
- initially constructed from propositional rules – from which both the predicted 
state of the system, and the likelihood of harm resulting from the change of state 
can be predicted.   

o Malicious Behavior Detector - a suspicious behavior detector that differentiates 
between accidents and malicious behavior by inferring user goals from the ob-
served harmful behavior, recent historical behaviors, and the set of plans 
consistent with the larger behavior context. 

• Regenerative Actuation: The mechanism to distinguish between benign actions and harm-
ful actions, followed by authorization or disallowing of actions, is in the architecture.  
However, if the operational system model needs to be changed (e.g., new information 
that changes some benign actions to harmful), the Harm Assessment module will need to 
be updated. 

Figure 38shows the RSRS architecture evaluation of the PMOP project, by translating the feed-
back structure shown in Figure 37 into the RSRS architecture concepts.   

Summary of PMOP Evaluation.  The PMOP project uses an operator behavior monitor to 
compare the expected actions (as defined by an Operational System Model) with the actual op-
erations.  If deviations are found, the Harm Assessment Module checks whether the 
extraordinary actions are dangerous.  Dangerous actions go through Intent Assessment, which 
distinguishes malicious insider actions from operator errors.  PMOP tools may be used to ob-
serve any applications for which a good set of models can be defined (Operational System 
Model, Harm Model, Intent Model).   
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Figure 37 Structure of PMOP Architecture and Data Flow 

 
Figure 38 RSRS Insider Project (PMOP) 
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C.4.2 Mitigating the Insider Threat using High-Dimensional Search and Monitor-
ing  

HDSM  (Telcordia: Eric van den Berg; Rutgers: Raj Rajagopalan) 

Figure 39 illustrates the structure of HDSM architecture, taken from one of the slides of the 
HDSM presentation at 07/12/05 PI Meeting.   

Summary: the approach can be modeled as MLA loop. 

• Monitoring:  

o A very large sensor network that collects data from numerous diverse sensors 
monitoring various system layers from physical to network layer to application 
layer and end-host sensors, making it very hard for any suspicious insider behav-
ior to avoid triggering some sensor alerts. 

o A network history repository, which contains historical states of the system that 
are annotated with attack and precursor information. We will deliver a design 
document and prototype of a network state description language in terms of col-
lected sensor data. 

• Learning-Based Diagnosis: 

o A high-dimensional search engine operating on the network history repository, 
that is based on dimension reduction techniques such as Singular Value Decom-
position (SVD). 

o A graph-based insider threat modeling and analysis tool, which identifies po-
tential insider attack points and attack scenarios in a network by modeling the 
effort required to acquire knowledge of internal details, and provides the required 
“experience” for the pre-attack training phase. 

• Regenerative Actuation: 

o A response engine, which performs an impact analysis of the potential attack on 
critical services and automatically synthesizes a response that minimizes collat-
eral damage, thwarting the predicted attack within minutes. 

Figure 40 shows the RSRS architecture evaluation of the HDSM project, by translating the struc-
ture shown in Figure 39 into the RSRS architecture concepts.   

Summary of HDSM Evaluation.  The HDSM project uses a large sensor network to collect be-
havioral information of operators.  These data are stored in a network history repository, based 
on which a high-dimensional search engine will learn to distinguish proper actions from insider 
threats.  An insider threat modeling and analysis tool builds models of insider knowledge acqui-
sition that precedes attacks.  A response engine performs impact analysis and synthesizes 
countermeasures that minimize potential damage.  Their tools may be used to observe and detect 
insider threats provided appropriate sensors and models can be built and deployed for the opera-
tions being observed. 
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Figure 39 Structure of HDSM Architecture 

 
Figure 40 RSRS Insider Analysis (HDSM) 
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C.4.3 RSRS Architectural Comparison of Insider Projects 

 
 

Figure 41 RSRS Comparison of Insider Projects 
 

The two Insider projects (not counting Asbestos) are structurally similar, with more emphasis on 
data mining in the HDSM project. 
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D. Summary of RSRS Analysis and Evaluation  
In this study, we have applied the RSRS architecture to analyze and evaluate the current SRS 
projects, divided into four areas: Cognitive, Diversity, Redundancy, and Insider.  Our main effort 
is on using the MLA (monitor-learning-actuator) feedback loop to capture the self-regenerative 
aspects of the projects.  Our second effort is evaluating the combination of diversity properties 
with self-regenerative properties in the achievement of quantitative SRS program goals. 

At the top level, the study shows that the MLA loop is an effective modeling tool for the four 
projects in the Cognitive area, the two projects in the Diversity area, and two projects in the In-
sider area (except for Asbestos, which provides isolation instead of threat identification).  The 
three projects in the Redundancy area use replication techniques to provide diversity regardless 
of MLA feedback.   

At the next level, we have used MLA loop (when applicable) and diversity techniques to analyze 
the architecture and main functionality goals of each project.  In this report (Part 1 of the study), 
we have found each project to provide unique and complementary functionality, if completed as 
proposed.  A scenario for the combination of the SRS project results into a useful system is the 
subject of the second report. 
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